Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(31): 21441-21447, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37469970

ABSTRACT

The catalytic properties of conventional H-[Al]-ZSM-5 and gallium-substituted H-[Ga]-ZSM-5 were evaluated in the conversion of methanethiol to ethylene (CH3SH → 1/2C2H4 + H2S). Dimethyl sulfide (DMS), aromatics, and CH4 were formed as byproducts on the H-[Al]-ZSM-5 catalyst. The introduction of Ga into the ZSM-5 structure provided a high ethylene yield with relatively high selectivity for olefins. Based on the temperature-programmed desorption of NH3 and pyridine adsorption on zeolites, the strength of acid sites was decreased by introducing Ga into the ZSM-5 structure. Undesirable reactions seemed less likely to occur at weakly acidic sites. The suppression of the formation of dimethyl sulfide (CH3SH → 1/2C2H6S + 1/2H2S) and the sequential reaction of ethylene to produce aromatics provided a high yield of ethylene over H-[Ga]-ZSM-5.

2.
RSC Adv ; 13(21): 14097-14101, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180019

ABSTRACT

This study investigates the effect of hydrogen sulfide (H2S) co-feeding on the synthesis of 2,5-dimethyl-1-hexene, 2,5-dimethyl-2-hexene, and 2,5-dimethylhexane (2,5-DMHs), useful compounds, using the dimerization of isobutene under mild pressure conditions. The dimerization of isobutene did not proceed in the absence of H2S, whereas the desired products of 2,5-DMHs were produced under H2S co-feeding conditions. The effect of reactor size on the dimerization reaction was then examined, and the optimal reactor was discussed. To enhance the yield of 2,5-DMHs, we changed the reaction conditions of the temperature, molar ratio of isobutene to H2S (iso-C4[double bond, length as m-dash]/H2S) in the feed gas, and the total feed pressure. The optimum reaction condition was at 375 °C and 2/1 of iso-C4[double bond, length as m-dash]/H2S. The product of 2,5-DMHs monotonously increased by an increment of total pressure from 1.0 to 3.0 atm with a fixed iso-C4[double bond, length as m-dash]/H2S ratio at 2/1.

3.
RSC Adv ; 13(17): 11525-11529, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063736

ABSTRACT

This study focused on evaluating the catalytic properties for the reverse water gas shift reaction (RWGS: CO2 + H2 → CO + H2O ΔH 0 = 42.1 kJ mol-1) in the presence of hydrogen sulfide (H2S) over a Fe/CeO2 catalyst, commercial Cu-Zn catalyst for the WGS reaction (MDC-7), and Co-Mo catalyst for hydrocarbon desulfurization. The Fe/CeO2 catalyst exhibited a relatively high catalytic activity to RWGS, compared to the commercial MDC-7 and Co-Mo catalysts. In addition, the Fe/CeO2 catalyst showed stable performance in the RWGS environment that contained high concentrations of H2S. The role of co-feeding H2S was investigated over the Fe/CeO2 catalyst by the temperature programmed reaction (TPR) of CO2 and H2 in the presence of H2S. The result of TPR indicated that the co-feeding H2S might enhance RWGS performance due to H2S acting as the hydrogen source to reduce CO2.

4.
RSC Adv ; 12(26): 16843-16846, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754909

ABSTRACT

To remove arsenite (As(iii)) from wastewater effectively, the catalytic oxidation of As(iii) to arsenate (As(v)) and As(v) precipitation with iron ions (Fe(iii)) was investigated. The Pt/SiO2 catalyst functioned as a reaction site for As(iii) with oxygen in the atmosphere. The combination of the Pt/SiO2 catalyst and Fe(iii) precipitant improved the removal of As(iii) in the precipitate; Pt/SiO2 worked as both an As(iii) oxidation site and precipitation site with Fe(iii) precipitant.

5.
RSC Adv ; 12(28): 17655-17660, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35765333

ABSTRACT

Selenium and its compounds in high concentration are toxic for humans, especially selenate (VI) is the most toxic due to its high solubility in water. To promote the reductive reaction of Se(vi) to Se(iv) or Se(0), which is relatively easy to remove in water, noble metal particles were added as reaction sites with a reductant. The highest removal performance of selenate in aqueous solution was achieved using rhodium particles supported on TiO2 (Rh/TiO2). Selenate was rapidly reduced with hydrazine on the metal particle, leading to a selenium deposition on the particle inhibiting the stable reductive reaction. On the other hand, when a weaker reductant such as formaldehyde was used for the selenate reduction, the selenium deposition was suppressed due to its low reactivity, resulting in a stable reductive reaction of selenate in water.

6.
J Hazard Mater ; 430: 128381, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35149488

ABSTRACT

Pyridine is a basic heterocyclic compound with high toxicity, widely found in liquid waste from industrial processes. The treatment of highly-concentrated pyridine was demonstrated using a novel mist-type water thermal plasma torch. Decomposition rate and TOC removal rate were more than 94% in all conditions, while the max energy efficiency reached about 23 g/kWh. With a high temperature of 5500-7500 K, more than 95% of carbon content in pyridine was converted into valuable gas products, while a little amount of formic acid and acetic acid were observed as liquid by-products. The production of hydrogen cyanide (HCN) during the thermal decomposition of pyridine was observed, which can be inhibited by increasing the input power. Based on the experimental results, detailed decomposition mechanisms in the high-temperature and the downstream region were discussed respectively. Water plasma shows significant potential in the treatment of non-biodegradable industrial liquid waste.


Subject(s)
Plasma Gases , Water Pollutants, Chemical , Industrial Waste , Pyridines , Wastewater , Water , Water Pollutants, Chemical/analysis
7.
Chem Commun (Camb) ; 46(47): 8950-2, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-20976331

ABSTRACT

Pd cathode catalysts for polymer electrolyte fuel cells have been covered with silica layers a few nanometres thick. The silica-coated Pd catalysts showed high activity and excellent durability for the oxygen reduction under the severe cathode conditions of PEFCs, while Pd catalysts without silica-coating were seriously deactivated under the same conditions. The coverage of Pd metal with silica prevents the diffusion of Pd species out of the silica layers.

8.
J Biosci Bioeng ; 105(1): 58-60, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18295721

ABSTRACT

The degree of dynamic morphological change of murine embryonic stem cells is investigated through direct observation by microscopy. As a result, we find that the degree of dynamic morphological change is proportional to the increase in the ratio of the cellular population in subculture.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Animals , Cell Differentiation , Cell Proliferation , Mice
9.
J Colloid Interface Sci ; 235(2): 235-240, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11254296

ABSTRACT

We investigated the in situ immobilization of ultrafine particles synthesized in a water/oil (w/o) microemulsion to silica for its possible application to supported metal catalysts. ZnS particles immobilized to silica by the ME method were consistent with those synthesized in a w/o microemulsion. Therefore, ZnS particles in a w/o microemulsion could be immobilized to silica without aggregation by this method. The relationship between the method of synthesizing Rh ultrafine particles in a w/o microemulsion and the diameter and diameter distribution of Rh particles immobilized to silica was studied. Rh-SiO(2) catalysts with a sharp diameter distribution could be prepared by immobilizing Rh-hydrazine complex particles because these complex particles would be very stable in a w/o microemulsion. The Rh particle diameters of Rh-SiO(2) catalysts prepared by changing the amount of silica produced were almost identical. Accordingly, the Rh particle diameter of Rh-SiO(2) catalysts could be controlled independently of Rh content by the ME method. Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...