Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
4.
Hematology ; 27(1): 396-403, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35344469

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a challenging disease with a growing genetic landscape, even though there is substantial gap between developed and non-developed countries when it comes to availability of such new technologies. This manuscript reports a 5-year retrospective cohort of newly diagnosed ALL patients and their genetic findings and outcomes. An expanded genetic evaluation by using FISH and RT-PCR was implemented, aiming to identify Ph-like alterations. Patients were treated according to our local protocol, which allocated patients according to age and Philadelphia-chromosome status. A total of 104 patients was included, with median age of 37.5 years. Philadelphia chromosome was detected in 33 cases of B-lineage. Among 45 Ph-negative B-lineage, after excluding KMT2A or TCF3-PBX1 cases, we identified 9 cases with Ph-like fusion. Ph-positive and Ph-like patients had higher initial WBC (p = 0.06). Out of 104 cases, two cases did not start chemotherapy and an early death rate of 10.8% was found. Allogeneic transplantation was performed in 18 cases, being ten performed in first CR. Three-year overall survival (OS) and 3-year event-free survival were 42.8% and 30.8%, respectively. For patients treated with a pediatric regimen, 3-year OS was 52.5%. Extramedullary disease (HR 0.42) and platelet counts (HR 0.9) were independently associated with OS. We still face excessive non-relapse mortality that compromises our results. Alternative strategies implementing FISH and RT-PCR are feasible and able to identify Ph-like fusions. Delays in allogeneic transplantation, as well as the unavailability of new agents, impact long-term survival. Measures to decrease early infection are desirable.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Retrospective Studies , Transplantation, Homologous
5.
Rev. bras. hematol. hemoter ; 38(2): 113-120, tab, graf
Article in English | LILACS | ID: lil-787665

ABSTRACT

BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN) in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14), and t(14;16)] in CD138+ cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14) were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.


Subject(s)
Humans , Cytogenetics , In Situ Hybridization, Fluorescence , Multiple Myeloma , Plasma , Plasmacytoma
6.
Rev Bras Hematol Hemoter ; 38(2): 113-20, 2016.
Article in English | MEDLINE | ID: mdl-27208569

ABSTRACT

BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN) in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14), and t(14;16)] in CD138(+) cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14) were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...