Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Mol Psychiatry ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030263

ABSTRACT

The subgenual anterior cingulate cortex (sgACC) has been identified as a key brain area involved in various cognitive and emotional processes. While the sgACC has been implicated in both emotional valuation and emotional conflict monitoring, it is still unclear how this area integrates multiple functions. We characterized both single neuron and local field oscillatory activity in 14 patients undergoing sgACC deep brain stimulation for treatment-resistant depression. During recording, patients were presented with a modified Stroop task containing emotional face images that varied in valence and congruence. We further analyzed spike-field interactions to understand how network dynamics influence single neuron activity in this area. Most single neurons responded to both valence and congruence, revealing that sgACC neuronal activity can encode multiple processes within the same task, indicative of multifunctionality. During peak neuronal response, we observed increased spectral power in low frequency oscillations, including theta-band synchronization (4-8 Hz), as well as desynchronization in beta-band frequencies (13-30 Hz). Theta activity was modulated by current trial congruency with greater increases in spectral power following non-congruent stimuli, while beta desynchronizations occurred regardless of emotional valence. Spike-field interactions revealed that local sgACC spiking was phase-locked most prominently to the beta band, whereas phase-locking to the theta band occurred in fewer neurons overall but was modulated more strongly for neurons that were responsive to task. Our findings provide the first direct evidence of spike-field interactions relating to emotional cognitive processing in the human sgACC. Furthermore, we directly related theta oscillatory dynamics in human sgACC to current trial congruency, demonstrating it as an important regulator during conflict detection. Our data endorse the sgACC as an integrative hub for cognitive emotional processing through modulation of beta and theta network activity.

3.
J Neurosurg ; : 1-8, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38626471

ABSTRACT

Magnetic resonance-guided focused ultrasound (MRgFUS) is one of the newest surgical treatments for essential tremor (ET). During this procedure, a lesion is created within the thalamus to mitigate tremor. Targeting is done using a combination of stereotaxy, MR tractography, and sublesional heating, with tremor assessed during the procedure to gauge therapeutic effectiveness. Currently, tremor assessments are done qualitatively, but this approach requires the tremor change to be above a subjective threshold and provides no objective record of surgical tremor progression. Here, the authors present and demonstrate an MR-compatible accelerometer with custom MATLAB analysis code and graphical user interface to record, visualize, and quantify tremor in near real-time. Results can be exported and saved for future review. This method was used in 20 surgeries, with patients experiencing a 50.7% (95% CI -64.1% to -37.3%) improvement in the treated limb per the Clinical Rating Scale for Tremor. This method does not interrupt the surgery and is quantitative. As research on optimizing MRgFUS treatment for ET continues-for example, the refinement of targeting during sublesional sonications-such quantifying and recording of tremor changes will provide rapid and objective feedback.

5.
World J Biol Psychiatry ; 25(3): 175-187, 2024 03.
Article in English | MEDLINE | ID: mdl-38185882

ABSTRACT

OBJECTIVES: This study compared machine learning models using unimodal imaging measures and combined multi-modal imaging measures for deep brain stimulation (DBS) outcome prediction in treatment resistant depression (TRD). METHODS: Regional brain glucose metabolism (CMRGlu), cerebral blood flow (CBF), and grey matter volume (GMV) were measured at baseline using 18F-fluorodeoxy glucose (18F-FDG) positron emission tomography (PET), arterial spin labelling (ASL) magnetic resonance imaging (MRI), and T1-weighted MRI, respectively, in 19 patients with TRD receiving subcallosal cingulate (SCC)-DBS. Responders (n = 9) were defined by a 50% reduction in HAMD-17 at 6 months from the baseline. Using an atlas-based approach, values of each measure were determined for pre-selected brain regions. OneR feature selection algorithm and the naïve Bayes model was used for classification. Leave-out-one cross validation was used for classifier evaluation. RESULTS: The performance accuracy of the CMRGlu classification model (84%) was greater than CBF (74%) or GMV (74%) models. The classification model using the three image modalities together led to a similar accuracy (84%0 compared to the CMRGlu classification model. CONCLUSIONS: CMRGlu imaging measures may be useful for the development of multivariate prediction models for SCC-DBS studies for TRD. The future of multivariate methods for multimodal imaging may rest on the selection of complementing features and the developing better models.Clinical Trial Registration: ClinicalTrials.gov (#NCT01983904).


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy , Bayes Theorem , Brain/diagnostic imaging , Brain/pathology , Multimodal Imaging
7.
Mol Psychiatry ; 28(9): 3888-3899, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37474591

ABSTRACT

Deep brain stimulation (DBS) has shown therapeutic benefits for treatment resistant depression (TRD). Stimulation of the subcallosal cingulate gyrus (SCG) aims to alter dysregulation between subcortical and cortex. However, the 50% response rates for SCG-DBS indicates that selection of appropriate patients is challenging. Since stimulation influences large-scale network function, we hypothesized that network features can be used as biomarkers to inform outcome. In this pilot project, we used resting-state EEG recorded longitudinally from 10 TRD patients with SCG-DBS (11 at baseline). EEGs were recorded before DBS-surgery, 1-3 months, and 6 months post surgery. We used graph theoretical analysis to calculate clustering coefficient, global efficiency, eigenvector centrality, energy, and entropy of source-localized EEG networks to determine their topological/dynamical features. Patients were classified as responders based on achieving a 50% or greater reduction in Hamilton Depression (HAM-D) scores from baseline to 12 months post surgery. In the delta band, false discovery rate analysis revealed that global brain network features (segregation, integration, synchronization, and complexity) were significantly lower and centrality of subgenual anterior cingulate cortex (ACC) was higher in responders than in non-responders. Accordingly, longitudinal analysis showed SCG-DBS increased global network features and decreased centrality of subgenual ACC. Similarly, a clustering method separated two groups by network features and significant correlations were identified longitudinally between network changes and depression symptoms. Despite recent speculation that certain subtypes of TRD are more likely to respond to DBS, in the SCG it seems that underlying brain network features are associated with ability to respond to DBS. SCG-DBS increased segregation, integration, and synchronizability of brain networks, suggesting that information processing became faster and more efficient, in those patients in whom it was lower at baseline. Centrality results suggest these changes may occur via altered connectivity in specific brain regions especially ACC. We highlight potential mechanisms of therapeutic effect for SCG-DBS.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Depressive Disorder, Treatment-Resistant/therapy , Pilot Projects , Deep Brain Stimulation/methods , Treatment Outcome , Gyrus Cinguli/physiology
8.
Phys Med Biol ; 68(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37254870

ABSTRACT

Objective. Focused ultrasound (FUS) neuromodulation non-invasively alters brain activity, likely via acoustic radiation force with dynamics of the pulse repetition frequency (PRF). PRF impacts neuromodulation as well as indirect auditory activation, a confound linked to skull vibrations. This study aimed to minimize these vibrations, by adjusting and randomizing PRF, and determine their impact on FUS-induced motor activity. We hypothesized that: the skull would vibrate most at a specific PRF; randomizing PRF would reduce skull vibrations without affecting motor responses; and FUS would yield motor activity while actuator-induced skull vibrations would not.Approach. Three objectives were studied in parallel using C57Bl/6 mice (n= number of mice used per objective). First, skull vibration amplitude, measured as a percentage of maximum amplitude per treatment, was recorded via contact microphone over a range of PRFs to assess the PRF-dependency of skull vibrations (n= 19). Vibrations were then compared between random and fixed PRFs (n= 15). Lastly, motor responses were compared between fixed 1.5 kHz PRF FUS, random PRF FUS, air-puff stimulation, sham stimulation, and vibration induction via piezoelectric actuator (n= 30).Main Results.The study found amplitude peaked at 1.51 kHz (88.1 ± 11.5%), significantly higher than at 0.54 kHz (75.5 ± 15.1%;p= 0.0149). Random PRF reduced amplitude by 4.2% (p= 0.0181). Motor response rates to actuator-induced skull vibrations at the PRF (5.73 ± 6.96%) and its third harmonic (22.9 ± 22.7%) were not significantly different than sham (14.1 ± 11.6%), but lower than FUS (70.2 ± 16.3%;p< 0.0001).Significance. Based on these results, PRF near 0.5 kHz may best avoid skull vibrations, while random PRF could be utilized to slightly reduce vibration amplitude. The results also suggested that skull vibrations likely do not significantly impact motor responses to FUS neuromodulation.


Subject(s)
Brain , Vibration , Mice , Animals , Brain/physiology , Vibration/therapeutic use , Rodentia , Skull/diagnostic imaging , Head
9.
World Neurosurg ; 175: 78-97, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37024081

ABSTRACT

BACKGROUND: Since the emergence of neurosurgery as a distinct specialty ∼100 years ago in Canada, it took >40 years for Canadian women to enter the field in the province of Quebec, and longer in the other provinces. METHODS: We provide a historical overview of Canadian women in neurosurgery, from the early pioneers to the modern-day leaders and innovators in the field. We also define the current participation of women in Canadian neurosurgery. Chain-referral sampling, historical books, interviews, personal communications, and online resources were used as data sources. RESULTS: Our historical review highlights the exceptional journey and unique experiences of female neurosurgeons, describes their achievements, and identifies career obstacles and enabling factors. We also incorporate comments from Canadian female neurosurgeons, both retired and in active practice, addressing gender inequities in the field, and provide advice and encouragement to the new generations to come. Despite the achievements of these female trailblazers, women represent a small proportion of the Canadian neurosurgery trainees and the active workforce, in stark contrast to the increasing number of women in medical school. CONCLUSIONS: To the best of our knowledge, this study represents the first historical overview of female women neurosurgeons in Canada. Providing a historical context will help us to better understand the important role of women in modern neurosurgery, identify persistent gender issues in the field, and provide a vision for aspiring female neurosurgeons.


Subject(s)
Neurosurgery , Humans , Female , Canada , Neurosurgeons , Workforce , Sexism
10.
Parkinsonism Relat Disord ; 110: 105397, 2023 05.
Article in English | MEDLINE | ID: mdl-37060621

ABSTRACT

INTRODUCTION: Rhythmic beta activity in the subthalamic nucleus (STN) local field potential (LFP) is associated with Parkinson disease (PD) severity, though not all studies have found this relationship. We investigated whether aperiodic 'noise' elements of LFP, specifically slope of the 1/f broadband, predict PD motor symptoms and outcomes of STN-DBS. METHODS: We studied micro-LFP from 19 PD patients undergoing STN-DBS, relating the aperiodic 1/f slope and the periodic beta oscillation components to motor severity using the UPDRS-III and improvement with DBS at 1 year. RESULTS: Beta power, not 1/f slope, independently predicted baseline UPDRS-III (r = 0.425, p = 0.020; r = -0.434, p = 0.032, respectively), but multiple regression using both predicted better (F (2, 16) = 6.621, p = 0.008, R2 = 0.453). Only multiple regression using both slope and beta power predicted improvement in UPDRS-III at 1 year post-operatively (F (2, 15) = 6.049, R2 = 0.446, p = 0.012). CONCLUSIONS: Both beta synchronization and slope of the 1/f broadband are informative of motor symptoms in PD and predict response to STN-DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/complications , Subthalamic Nucleus/physiology , Treatment Outcome
11.
J Psychiatr Ment Health Nurs ; 30(5): 1005-1018, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37002931

ABSTRACT

WHAT IS KNOWN ON THE SUBJECT?: Major depressive disorder is the most prevalent of all mental illnesses. 10%-20% of patients with depression and 1% of the population overall have treatment-resistant depression (TRD). DBS is an emerging investigational treatment for TRD with documented clinical efficacy and safety. The framework of the recovery model includes both clinical and personal recovery. Personal recovery is a self-process in which hope, empowerment and optimism are embraced to overcome the impact of mental illness on one's sense of self. Although clinical and functional outcomes of DBS for TRD have been well documented in the previous studies, personal recovery as an outcome has been explored only in a handful of studies. WHAT THIS PAPER ADDS TO EXISTING KNOWLEDGE?: This is the first qualitative study exploring personal recovery from DBS treatment specific to the target of subcallosal cingulate cortex in patients with TRD. Since the existing literature on personal recovery in DBS studies is limited, the contribution of this paper is crucial to this field. For individuals who responded to deep brain stimulation clinically, neither participants nor family believed it cured their depression, but rather there was a significant decrease in the severity of symptoms of depression. A holistic-oriented framework (that includes personal recovery) is significant for those individuals with TRD undergoing DBS. Personal and clinical recovery are two different constructs, and individuals may experience one or the other or both. The experience of participants who responded to deep brain stimulation recognized that the recovery from depression is a process of reconstructing self. This process involved a period of adjustment that evoked a deeper self-awareness, re-engagement with daily living and newfound gratitude in living. Individuals transitioned from an emotionally driven life to one where future goals were considered. Supportive relationships were instrumental in this process. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: A deep brain stimulation intervention for treatment-resistant depression offered individuals an opportunity for personal recovery where a reconstruction of self occurred. Personal recovery can be considered as an outcome in conjunction with clinical and functional outcomes in future DBS trials for TRD. The relevance of personal recovery in the prevention of relapses needs further investigation. To advocate for care and services that facilitate the process of recovery from depression, it is important to understand the personal dimensions and experience of recovery that may influence the process. To develop recovery-oriented interventions to help patients and families in recovery post-deep brain stimulation, further understanding of support and negotiating relationships during this life-altering experience is needed. ABSTRACT: Introduction Multiple trials of antidepressant treatments in patients with depression pose a major challenge to the mental health system. Deep brain stimulation (DBS) is an emerging and promising investigational treatment to reduce depressive symptoms in individuals with treatment-resistant depression (TRD). The clinical and functional outcomes of DBS for TRD have been well documented in previous studies; however, studies of personal recovery as an outcome of DBS specific to the target of subcallosal cingulate cortex in patients with TRD are limited. Aim To explore the processes of personal recovery in patients with treatment-resistant depression following subcallosal cingulate-deep brain stimulation. Method Participants were 18 patients with TRD who participated in the subcallosal cingulate (SCC)-DBS trial and 11 family members. They also participated in add-on individual cognitive behavioural therapy during the trial. A qualitative constructivist grounded theory approach was used to conceptualize the personal recovery process of patients and families. Results While every participant and their families' journey were unique following the deep brain stimulation intervention, a theoretical model of Balancing to Establish a Reconstructed Self emerged from the data. The themes underlying the model were (1) Balancing to Establish a Reconstructed Self: A Whole-Body Experience, (2) The Liminal Space in-between: Balancing with Cautious Optimism, (3) Hope: Transitioning from Emotion-Focussed Living to Goal-Oriented Planning and (4) Support: Negotiating Relationships. Discussion This is the first study examining recovery from patients' perspectives as an outcome of SCC-DBS intervention for TRD. The study shows that personal recovery is a gradual and continual process of reconstruction of the self, developing through supportive relationships. Clinical and personal recovery are two distinct constructs, and individuals may experience one or the other or both. Most patients who do respond clinically experience improvement in terms of having optimism and hope. Some patients, however, respond with significant symptom reduction but are not able to achieve personal recovery to experience joy or hope for improved quality of living. Implications for Practice Strategies for personal recovery for both patients and family need to be considered during and post deep brain stimulation intervention. Nurses working with these patients and families may benefit from education, training and support to assess and engage in conversations about their recovery process.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Humans , Deep Brain Stimulation/methods , Depressive Disorder, Treatment-Resistant/therapy , Grounded Theory
12.
Mov Disord ; 38(5): 831-842, 2023 05.
Article in English | MEDLINE | ID: mdl-36947685

ABSTRACT

BACKGROUND: Magnetic resonance-guided focused-ultrasound (MRgFUS) thalamotomy is an effective treatment for essential and other tremors. It targets the ventrointermedius (Vim) nucleus, which is the thalamic relay in a proprioceptive pathway, and contains kinesthetic cells. Although MRgFUS thalamotomy reduces some risks associated with more invasive surgeries, it still has side effects, such as balance and gait disturbances; these may be caused by the lesion impacting proprioception. OBJECTIVES: Our aim was to quantitatively measure the effects of MRgFUS on proprioception and limb use in essential tremor patients. We hypothesized that this thalamotomy alters proprioception, because the sensorimotor Vim thalamus is lesioned. METHODS: Proprioception was measured using the Kinarm exoskeleton robot in 18 patients. Data were collected pre-operatively, and then 1 day, 3 months, and 1 year after surgery. Patients completed four tasks, assessing motor coordination and postural control, goal-directed movement and bimanual planning, position sense, and kinesthesia. RESULTS: Immediately after surgery there were changes in posture speed (indicating tremor improvement), and in bimanual hand use, with the untreated limb being preferred. However, these measures returned to pre-operative baseline over time. There were no changes in parameters related to proprioception. None of these measures correlated with lesion size or lesion-overlap with the dentato-rubro-thalamic tract. CONCLUSIONS: This is the first quantitative assessment of proprioception and limb preference following MRgFUS thalamotomy. Our results suggest that focused-ultrasound lesioning of the Vim thalamus does not degrade proprioception but alters limb preference. This change may indicate a required "relearning" in the treated limb, because the effect is transient. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Essential Tremor , Tremor , Humans , Tremor/surgery , Thalamus/diagnostic imaging , Thalamus/surgery , Thalamus/pathology , Ultrasonography , Magnetic Resonance Imaging/methods , Treatment Outcome , Essential Tremor/therapy
13.
J Clin Neurophysiol ; 40(4): 293-300, 2023 May 01.
Article in English | MEDLINE | ID: mdl-34334683

ABSTRACT

PURPOSE: Cerebellar connectivity is thought to be abnormal in cervical dystonia (CD) and other dystonia subtypes, based on evidence from imaging studies and animal work. The authors investigated whether transcranial magnetic stimulation-induced cerebellar brain inhibition (CBI), a measure of cerebellar efficiency at inhibiting motor outflow, is abnormal in patients with CD and/or is associated with clinical features of CD. Because of methodological heterogeneity in CBI reporting, the authors deployed additional controls to reduce potential sources of variability in this study. METHODS: Cerebellar brain inhibition was applied in 20 CD patients and 14 healthy control subjects. Cerebellar brain inhibition consisted of a cerebellar conditioning stimulus delivered at four different interstimulus intervals (ISIs) before a test stimulus delivered to hand muscle representation in the motor cortex. The average ratio of conditioned to unconditioned motor evoked potential was computed for each ISI. Cervical dystonia clinical severity was measured using the Toronto Western Spasmodic Torticollis Rating Scale. Control experiments involved neuronavigated transcranial magnetic stimulation, neck postural control in patients, and careful screening for noncerebellar pathway inhibition via cervicomedullary evoked potentials. RESULTS: There was no difference between CBI measured in healthy control subjects and CD patients at any of the four ISIs; however, CBI efficiency was significantly correlated with worsening CD clinical severity at the 5 ms ISI. CONCLUSIONS: Cerebellar brain inhibition is a variable measure in both healthy control subjects and CD patients; much of this variability may be attributed to experimental methodology. Yet, CD severity is significantly associated with reduced CBI at the 5 ms ISI, suggestive of cerebello-thalamo-cortical tract dysfunction in this disorder.


Subject(s)
Torticollis , Humans , Brain , Cerebellum/physiology , Transcranial Magnetic Stimulation/methods , Muscle, Skeletal , Evoked Potentials, Motor/physiology , Neural Inhibition/physiology
14.
J Biophotonics ; 15(11): e202200076, 2022 11.
Article in English | MEDLINE | ID: mdl-36054592

ABSTRACT

Deep brain stimulation (DBS) is a revolutionary treatment for movement disorders. Measuring DBS-induced hemodynamic responses may be useful for surgical guidance of DBS electrode implantation as well as to study the mechanism and assess therapeutic effects of DBS. In this study, we evaluated the performance of a single fiber spectroscopic (SFS) system for measuring hemodynamic response in different cortical layers in a DBS animal model. We showed that SFS is capable of measuring minute relative changes in oxygen saturation and blood volume fraction in-vivo at a sampling rate of 22-33 Hz. During stimulation, blood volume fraction increased, while oxygen saturation showed both increases and decreases at different cortical depths across animals. In addition, we showed the potential of using SFS for measuring other physiological parameters, for example, heart rate, and respiratory rate.


Subject(s)
Deep Brain Stimulation , Animals , Deep Brain Stimulation/methods , Spectrum Analysis , Hemodynamics
15.
Neuroimage ; 249: 118848, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34954330

ABSTRACT

Over the past 15 years, deep brain stimulation (DBS) has been actively investigated as a groundbreaking therapy for patients with treatment-resistant depression (TRD); nevertheless, outcomes have varied from patient to patient, with an average response rate of ∼50%. The engagement of specific fiber tracts at the stimulation site has been hypothesized to be an important factor in determining outcomes, however, the resulting individual network effects at the whole-brain scale remain largely unknown. Here we provide a computational framework that can explore each individual's brain response characteristics elicited by selective stimulation of fiber tracts. We use a novel personalized in-silico approach, the Virtual Big Brain, which makes use of high-resolution virtual brain models at a mm-scale and explicitly reconstructs more than 100,000 fiber tracts for each individual. Each fiber tract is active and can be selectively stimulated. Simulation results demonstrate distinct stimulus-induced event-related potentials as a function of stimulation location, parametrized by the contact positions of the electrodes implanted in each patient, even though validation against empirical patient data reveals some limitations (i.e., the need for individual parameter adjustment, and differential accuracy across stimulation locations). This study provides evidence for the capacity of personalized high-resolution virtual brain models to investigate individual network effects in DBS for patients with TRD and opens up novel avenues in the personalized optimization of brain stimulation.


Subject(s)
Cerebral Cortex/physiopathology , Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant/physiopathology , Depressive Disorder, Treatment-Resistant/therapy , Evoked Potentials/physiology , Nerve Net/physiopathology , Electroencephalography , Gyrus Cinguli/physiopathology , Humans , Implantable Neurostimulators , Neural Pathways/physiology , Precision Medicine , Spatio-Temporal Analysis
16.
Appl Neuropsychol Adult ; 29(6): 1562-1570, 2022.
Article in English | MEDLINE | ID: mdl-33721508

ABSTRACT

A deeper understanding of the cross-cultural applicability of cognitive tests across countries and cultures is needed to better equip neuropsychologists for the assessment of patients from diverse backgrounds. Our study compared cognitive test scores in patients with advanced Parkinson's disease (PD) at the Prince of Wales Hospital (n = 63; Hong Kong) and the Foothills Medical Center (n = 20; Calgary, Canada). The groups did not differ in age or sex (p > .05), but Western patients had significantly more years of education (M = 14.2, SD = 2.7) than Asian patients (M = 10.33, SD = 4.4). Cognitive tests administered to both groups included: digit span, verbal fluency (animals), the Boston Naming Test, and verbal memory (California Verbal Learning Test or Chinese Auditory Verbal Learning Test). Testing was completed before and 12 months after deep brain stimulation surgery. Results showed cognitive performance was similar across time, but significant group differences were found on digit span forward (longer among patients from Hong Kong; F(1, 75) = 44.155, p < .001) and the Boston Naming Test (higher percent spontaneous correct among patients from Canada; F(1, 62) = 7.218, p = .009, η2 = 0.104), after controlling for age, sex, and years of education. In conclusion, our findings provide preliminary support for the similarity of Chinese versions of tests originally developed for Western populations. Also, we caution that some aspects of testing may be susceptible to cultural bias and therefore warrant attention in clinical practice and refinement in future test development for Asian patients.


Subject(s)
Parkinson Disease , Cognition , Hong Kong , Humans , Neuropsychological Tests , Parkinson Disease/complications , Retrospective Studies
17.
Front Neurol ; 12: 790027, 2021.
Article in English | MEDLINE | ID: mdl-34912292

ABSTRACT

Introduction: Essential tremor (ET) is a tremor syndrome characterized by bilateral, upper limb action tremor. Essential tremor-plus (ET-plus) describes ET patients with additional neurologic signs. It is unknown whether there is a difference in response to treatment with ventralis intermedius nucleus deep brain stimulation (VIM DBS) in patients with ET and ET-plus. Due to potential variability in underlying etiology in ET-plus, there is a concern that ET-plus patients may have worse outcomes. The aim of this study was to identify whether patients with ET-plus have worse tremor outcomes after VIM DBS than patients with ET. Methods: This is a retrospective chart and video review evaluating VIM DBS outcomes by comparing changes from baseline in the Fahn-Tolosa-Marin Tremor Rating Scale Part B (FTM-B) for the treated limb between patients with ET and ET-plus at follow-up examinations. Patients were re-classified as having ET or ET-plus using pre-operative examination videos by two independent movement disorders neurologists blinded to patient characteristics. As a secondary outcome, we evaluated for correlations and potential predictors of treatment response. Results: Twenty-six patients were included: 13 with ET, 13 with ET-plus. There were no significant differences in the change in FTM-B scores between the ET and ET-plus patients at each follow-up examination. None of the included patients developed new symptoms compatible with dystonia, parkinsonism or gait disturbances. Conclusions: Patients with ET-plus had tremor improvement from VIM DBS, with no differences when compared to those with ET, without emergence of postoperative neurological issues. Patients with ET-plus should still be considered good candidates for VIM DBS for treatment of tremor.

18.
J Psychiatry Neurosci ; 46(4): E490-E499, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34609949

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a promising investigational approach for treatment-resistant depression. However, reports suggesting changes in personality with DBS for movement disorders have raised clinical and ethical concerns. We prospectively examined changes in personality dimensions and antidepressant response to subcallosal cingulate (SCC)-DBS for treatment-resistant depression. METHODS: Twenty-two patients with treatment-resistant depression underwent SCC-DBS. We used the NEO Five-Factor Inventory for personality assessment at baseline and every 3 months until 15 months post-DBS. We assessed depression severity monthly using the Hamilton Depression Rating Scale. RESULTS: We found a significant decrease in neuroticism (p = 0.002) and an increase in extraversion (p = 0.001) over time, showing a change toward normative data. Improvement on the Hamilton Depression Rating Scale was correlated with decreases in neuroticism at 6 months (p = 0.001) and 12 months (p < 0.001), and with an increase in extraversion at 12 months (p = 0.01). Changes on the Hamilton Depression Rating Scale over time had a significant covariate effect on neuroticism (p < 0.001) and extraversion (p = 0.001). Baseline openness and agreeableness predicted response to DBS at 6 (p = 0.006) and 12 months (p = 0.004), respectively. LIMITATIONS: Limitations included a small sample size, a lack of sham control and the use of subjective personality evaluation. CONCLUSION: We observed positive personality changes following SCC-DBS, with reduced neuroticism and increased extraversion related to clinical improvement in depression, suggesting a state effect. As well, pretreatment levels of openness and agreeableness may have predicted subsequent response to DBS. The NEO Five-Factor Inventory assessment may have a role in clinical decision-making and prognostic evaluation in patients with treatment-resistant depression who undergo SCC-DBS.


Subject(s)
Deep Brain Stimulation , Depression/psychology , Depression/therapy , Depressive Disorder, Treatment-Resistant/psychology , Depressive Disorder, Treatment-Resistant/therapy , Gyrus Cinguli , Personality , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
19.
Front Neurosci ; 15: 709368, 2021.
Article in English | MEDLINE | ID: mdl-34489629

ABSTRACT

Motor cortical representation can be probed non-invasively using a transcranial magnetic stimulation (TMS) technique known as motor mapping. The mapping technique can influence features of the maps because of several controllable elements. Here we review the literature on six key motor mapping parameters, as well as their influence on outcome measures and discuss factors impacting their selection. 132 of 1,587 distinct records were examined in detail and synthesized to form the basis of our review. A summary of mapping parameters, their impact on outcome measures and feasibility considerations are reported to support the design and interpretation of TMS mapping studies.

20.
Int Rev Neurobiol ; 159: 241-273, 2021.
Article in English | MEDLINE | ID: mdl-34446249

ABSTRACT

This chapter explores the complex neuroethical aspects of neurosurgery and neuromodulation in the context of Canadian healthcare and innovation, as seen through the lens of the Pan Canadian Neurotechnology Ethics Consortium (PCNEC). Highlighted are key areas of ethical focus, each with its own unique challenges: technical advances, readiness and risk, vulnerable populations, medico-legal issues, training, and research. Through an exploration of Canadian neurotechnological practice from these various clusters, we provide a critical review of progress, describe opportunities to address areas of debate, and seek to foster ethical innovation. Underpinning this comprehensive review are the fundamental principles of solution-oriented, practical neuroethics, with beneficence and justice at the core. In our view, it is a moral imperative that neurotechnological advancements include a delineation of ethical priorities for future guidelines, oversight, and interactions.


Subject(s)
Biotechnology , Ethics , Leadership , Neurosciences , Canada , Humans
SELECTION OF CITATIONS
SEARCH DETAIL