Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Macro Lett ; 5(3): 419-423, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-35614715

ABSTRACT

Chain-transfer polymerization reactions with siloxanes, CO2, and cyclohexene oxide have been conducted, utilizing two ß-diiminate (BDI) zinc-based catalysts, BDICF3(1)-ZnEt and BDICF3(2)-ZnEt ((BDICF3(1))H = [CH(CCF3NC6H4-2,6-C2H5)2] and (BDICF3(2))H = [CH(CCF3NC6H4-2,6-CH(CH3)2)2]). The correlation between equivalents of siloxane and the corresponding molecular masses and glass transition temperatures is exhibited. Furthermore, the in situ preparation of ABA block copolymers from carbon dioxide, cyclohexene oxide, and α,ω-bis(hydroxymethyl)poly(dimethylsiloxane)s is presented. This reaction was found to strongly relate to a robust Lewis acid catalyst like the outlined complexes. The polymer properties can be tuned by varying the amount of chain-transfer agent or changing the catalyst. The resulting polymer structures and incorporation of siloxanes were revealed by 29Si NMR spectroscopy, 1H NMR spectroscopy, ESI-MS, GPC, and DSC.

2.
Chemistry ; 21(39): 13609-17, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26263891

ABSTRACT

Poly(3-hydroxybutyrate) (PHB) is produced by numerous bacteria as carbon and energy reserve storage material. Whereas nature only produces PHB in its strictly isotactic (R) form, homogeneous catalysis, when starting from racemic (rac) ß-butyrolactone (BL) as monomer, can in fact produce a wide variety of tacticities. The variation of the metal center and the surrounding ligand structure enable activity as well as tacticity tuning. However, no homogeneous catalyst exists to date that is easy to modify, highly active, and able to produce PHB with high isotacticities from rac-ß-BL. Therefore, in this work, the reaction kinetics of various 2-methoxyethylamino-bis(phenolate) lanthanide (Ln=Sm, Tb, Y, Lu) catalysts are examined in detail. The order in monomer and catalyst are determined to elucidate the reaction mechanism and the results are correlated with DFT calculations of the catalytic cycle. Furthermore, the enthalpies and entropies of the rate-determining steps are determined through temperature-dependent in situ IR measurements. Experimental and computational results converge in one specific mechanism for the ring-opening polymerization of BL and even allow us to rationalize the preference for syndiotactic PHB.

3.
Chemistry ; 21(22): 8148-57, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25900151

ABSTRACT

The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co-polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co-polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co-polymerization was not stable enough to deactivate the catalyst due to steric repulsion.

SELECTION OF CITATIONS
SEARCH DETAIL