Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Vet Dent ; : 8987564241248818, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706174

ABSTRACT

A photographic and computed tomography (CT) scanning study was carried out on 295 molar teeth of 18 adult male Babyrousa babyrussa skulls and 8 skulls of Babyrousa celebensis including seven adult males and one adult female. The occlusal morphology of the permanent maxillary and mandibular molar teeth of B. babyrussa was very similar to that of B. celebensis. Most B. babyrussa maxillary molar teeth had six roots, with small numbers of teeth having four, five or seven roots. A similar pattern was suggested in B. celebensis. Mandibular molar teeth had between four and eight roots. Tooth roots of maxillary and mandibular first and second molar teeth were largely tapering, rod-like structures. The roots of the right and left maxillary third molar teeth had a more complex arrangement; some were inserted almost vertically into the maxilla; others were orientated in a more distal direction. The mesial and distal roots were splayed in appearance. The right and left mandibular third molar tooth roots retained elements of the open 'C' shape and were generally orientated distally. The pulp chambers were arched to fit under the main cusps in all molar teeth. Pulp canals were variable in number.

2.
Proc Natl Acad Sci U S A ; 121(2): e2310763120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165928

ABSTRACT

Habitat degradation and loss of genetic diversity are common threats faced by almost all of today's wild cats. Big cats, such as tigers and lions, are of great concern and have received considerable conservation attention through policies and international actions. However, knowledge of and conservation actions for small wild cats are lagging considerably behind. The black-footed cat, Felis nigripes, one of the smallest felid species, is experiencing increasing threats with a rapid reduction in population size. However, there is a lack of genetic information to assist in developing effective conservation actions. A de novo assembly of a high-quality chromosome-level reference genome of the black-footed cat was made, and comparative genomics and population genomics analyses were carried out. These analyses revealed that the most significant genetic changes in the evolution of the black-footed cat are the rapid evolution of sensory and metabolic-related genes, reflecting genetic adaptations to its characteristic nocturnal hunting and a high metabolic rate. Genomes of the black-footed cat exhibit a high level of inbreeding, especially for signals of recent inbreeding events, which suggest that they may have experienced severe genetic isolation caused by habitat fragmentation. More importantly, inbreeding associated with two deleterious mutated genes may exacerbate the risk of amyloidosis, the dominant disease that causes mortality of about 70% of captive individuals. Our research provides comprehensive documentation of the evolutionary history of the black-footed cat and suggests that there is an urgent need to investigate genomic variations of small felids worldwide to support effective conservation actions.


Subject(s)
Felidae , Felis , Lions , Humans , Animals , Felidae/genetics , Genome , Genomics
3.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066967

ABSTRACT

Zoo animals are crucial for conserving and potentially re-introducing species to the wild, yet it is known that the morphology of captive animals differs from that of wild animals. It is important to know how and why zoo and wild animal morphology differs to better care for captive animals and enhance their survival in reintroductions, and to understand how plasticity may influence morphology, which is supposedly indicative of evolutionary relationships. Using museum collections, we took 56 morphological measurements of skulls and mandibles from 617 captive and wild lions and tigers, reflecting each species' recent historical range. Linear morphometrics were used to identify differences in size and shape. Skull size does not differ between captive and wild lions and tigers, but skull and mandible shape does. Differences occur in regions associated with biting, indicating that diet has influenced forces acting upon the skull and mandible. The diets of captive big cats used in this study predominantly consisted of whole or partial carcasses, which closely resemble the mechanical properties of wild diets. Thus, we speculate that the additional impacts of killing, manipulating and consuming large prey in the wild have driven differentiation between captive and wild big cats.

4.
Mol Biol Evol ; 40(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37987553

ABSTRACT

Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation.


Subject(s)
Biological Evolution , Gene Flow , Animals , Genome , Genomics , Primates/genetics , Phylogeny , Hybridization, Genetic , Mammals
5.
Curr Biol ; 33(21): 4751-4760.e14, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37935117

ABSTRACT

Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities.


Subject(s)
Felis , Hybridization, Genetic , Humans , Cats/genetics , Animals , Cattle , Bees , Sheep , Swine , Chickens , Felis/genetics , Europe , Gene Flow
6.
Curr Biol ; 33(21): 4761-4769.e5, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37935118

ABSTRACT

The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.


Subject(s)
Gene Flow , Hybridization, Genetic , Animals , Cats , Scotland
7.
Sci Adv ; 9(40): eadh9143, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801506

ABSTRACT

Clouded leopards (Neofelis spp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution of Neofelis. Our results indicate the genus Neofelis arose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards' unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation in Neofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.


Subject(s)
Genetics, Population , Genomics , Humans
8.
Genes (Basel) ; 14(5)2023 05 03.
Article in English | MEDLINE | ID: mdl-37239398

ABSTRACT

Fin whales Balaenoptera physalus were hunted unsustainably across the globe in the 19th and 20th centuries, leading to vast reductions in population size. Whaling catch records indicate the importance of the Southern Ocean for this species; approximately 730,000 fin whales were harvested during the 20th century in the Southern Hemisphere (SH) alone, 94% of which were at high latitudes. Genetic samples from contemporary whales can provide a window to past population size changes, but the challenges of sampling in remote Antarctic waters limit the availability of data. Here, we take advantage of historical samples in the form of bones and baleen available from ex-whaling stations and museums to assess the pre-whaling diversity of this once abundant species. We sequenced 27 historical mitogenomes and 50 historical mitochondrial control region sequences of fin whales to gain insight into the population structure and genetic diversity of Southern Hemisphere fin whales (SHFWs) before and after the whaling. Our data, both independently and when combined with mitogenomes from the literature, suggest SHFWs are highly diverse and may represent a single panmictic population that is genetically differentiated from Northern Hemisphere populations. These are the first historic mitogenomes available for SHFWs, providing a unique time series of genetic data for this species.


Subject(s)
Fin Whale , Animals , Fin Whale/genetics , Whales/genetics , Population Density , Antarctic Regions
9.
Commun Biol ; 6(1): 153, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746982

ABSTRACT

Population-genomic studies can shed new light on the effect of past demographic processes on contemporary population structure. We reassessed phylogeographical patterns of a classic model species of postglacial recolonisation, the brown bear (Ursus arctos), using a range-wide resequencing dataset of 128 nuclear genomes. In sharp contrast to the erratic geographical distribution of mtDNA and Y-chromosomal haplotypes, autosomal and X-chromosomal multi-locus datasets indicate that brown bear population structure is largely explained by recent population connectivity. Multispecies coalescent based analyses reveal cases where mtDNA haplotype sharing between distant populations, such as between Iberian and southern Scandinavian bears, likely results from incomplete lineage sorting, not from ancestral population structure (i.e., postglacial recolonisation). However, we also argue, using forward-in-time simulations, that gene flow and recombination can rapidly erase genomic evidence of former population structure (such as an ancestral population in Beringia), while this signal is retained by Y-chromosomal and mtDNA, albeit likely distorted. We further suggest that if gene flow is male-mediated, the information loss proceeds faster in autosomes than in X chromosomes. Our findings emphasise that contemporary autosomal genetic structure may reflect recent population dynamics rather than postglacial recolonisation routes, which could contribute to mtDNA and Y-chromosomal discordances.


Subject(s)
Ursidae , Animals , Male , Ursidae/genetics , DNA, Mitochondrial/genetics , Phylogeography , Population Dynamics , Mitochondria/genetics
10.
R Soc Open Sci ; 9(11): 220697, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36465684

ABSTRACT

Tiger subspecific taxonomy is controversial because of morphological and genetic variation found between now fragmented populations, yet the extent to which phenotypic plasticity or genetic variation affects phenotypes of putative tiger subspecies has not been explicitly addressed. In order to assess the role of phenotypic plasticity in determining skull variation, we compared skull morphology among continental tigers from zoos and the wild. In turn, we examine continental tiger skulls from across their wild range, to evaluate how the different environmental conditions experienced by individuals in the wild can influence morphological variation. Fifty-seven measurements from 172 specimens were used to analyse size and shape differences among wild and captive continental tiger skulls. Captive specimens have broader skulls, and shorter rostral depths and mandible heights than wild specimens. In addition, sagittal crest size is larger in wild Amur tigers compared with those from captivity, and it is larger in wild Amur tigers compared with other wild continental tigers. The degree of phenotypic plasticity shown by the sagittal crest, skull width and rostral height suggests that the distinctive shape of Amur tiger skulls compared with that of other continental tigers is mostly a phenotypically plastic response to differences in their environments.

11.
Commun Integr Biol ; 15(1): 190-192, 2022.
Article in English | MEDLINE | ID: mdl-35957842

ABSTRACT

Morphological traits, such as white patches, floppy ears and curly tails, are ubiquitous in domestic animals and are referred to as the 'domestication syndrome'. A commonly discussed hypothesis that has the potential to provide a unifying explanation for these traits is the 'neural crest/domestication syndrome hypothesis'. Although this hypothesis has the potential to explain most traits of the domestication syndrome, it only has an indirect connection to the reduction of brain size, which is a typical trait of domestic animals. We discuss how the expensive-tissue hypothesis might help explain brain-size reduction in domestication.

12.
J Am Chem Soc ; 144(6): 2484-2487, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35107291

ABSTRACT

Analyzing the δ2H values in individual amino acids of proteins extracted from vertebrates, we unexpectedly found in some samples, notably bone collagen from seals, more than twice as much deuterium in proline and hydroxyproline residues than in seawater. This corresponds to at least 4 times higher δ2H than in any previously reported biogenic sample. We ruled out diet as a plausible mechanism for such anomalous enrichment. This finding puts into question the old adage that "you are what you eat".


Subject(s)
Collagen/chemistry , Deuterium/chemistry , Hydroxyproline/chemistry , Proline/chemistry , Animals , Anseriformes , Bone and Bones/chemistry , Fibroblasts , Humans , Mice , Seals, Earless , Ursidae
13.
R Soc Open Sci ; 9(1): 210477, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35116138

ABSTRACT

Reduced brain size, compared with wild individuals, is argued to be a key characteristic of domesticated mammal species, and often cited as a key component of a putative 'domestication syndrome'. However, brain size comparisons are often based on old, inaccessible literature and in some cases drew comparisons between domestic animals and wild species that are no longer thought to represent the true progenitor species of the domestic species in question. Here we replicate studies on cranial volumes in domestic cats that were published in the 1960s and 1970s, comparing wildcats, domestic cats and their hybrids. Our data indicate that domestic cats indeed, have smaller cranial volumes (implying smaller brains) relative to both European wildcats (Felis silvestris) and the wild ancestors of domestic cats, the African wildcats (Felis lybica), verifying older results. We further found that hybrids of domestic cats and European wildcats have cranial volumes that cluster between those of the two parent species. Apart from replicating these studies, we also present new data on palate length in Felis cat skulls, showing that domestic cat palates are shorter than those of European wildcats but longer than those of African wildcats. Our data are relevant to current discussions of the causes and consequences of the 'domestication syndrome' in domesticated mammals.

14.
Mol Ecol ; 30(15): 3688-3702, 2021 08.
Article in English | MEDLINE | ID: mdl-34042240

ABSTRACT

While hybridisation has long been recognised as an important natural phenomenon in evolution, the conservation of taxa subject to introgressive hybridisation from domesticated forms is a subject of intense debate. Hybridisation of Scottish wildcats and domestic cats is a good example in this regard. Here, we developed a modelling framework to determine the timescale of introgression using approximate Bayesian computation (ABC). Applying the model to ddRAD-seq data from 129 individuals, genotyped at 6546 loci, we show that a population of wildcats genetically distant from domestic cats is still present in Scotland. These individuals were found almost exclusively within the captive breeding programme. Most wild-living cats sampled were introgressed to some extent. The demographic model predicts high levels of gene-flow between domestic cats and Scottish wildcats (13% migrants per generation) over a short timeframe, the posterior mean for the onset of hybridisation (T1 ) was 3.3 generations (~10 years) before present. Although the model had limited power to detect signals of ancient admixture, we found evidence that significant recent hybridisation may have occurred subsequent to the founding of the captive breeding population (T2 ). The model consistently predicts T1 after T2 , estimated here to be 19.3 generations (~60 years) ago, highlighting the importance of this population as a resource for conservation management. Additionally, we evaluate the effectiveness of current methods to classify hybrids. We show that an optimised 35 SNP panel is a better predictor of the ddRAD-based hybrid score in comparison with a morphological method.


Subject(s)
Hybridization, Genetic , Microsatellite Repeats , Animals , Bayes Theorem , Cats , Genotype , Scotland
15.
J Zoo Wildl Med ; 52(1): 67-74, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33827162

ABSTRACT

Diagnosis of foot disease in elephants is challenging. Owing to their large size, the available diagnostic tools and the expense of imaging are diagnostically limiting. Stereoradiography is the preparation of paired radiographs that form a three-dimensional (3D) image when viewed stereoscopically. Clinicians and veterinary students graded osteoarthritis in the feet of African (Loxodonta africana) and Asian (Elephas maximus) elephants taken postmortem with standard 2D radiographs, as well as 3D stereoradiographs. These gradings were compared with the actual gross pathology identified in the specimens. Although veterinary students diagnoses were no better than chance from 2D radiographs, 83.6% of the students could correctly differentiate severity between joints on stereoradiography; this is an absolute improvement of 30.1% (95% confidence interval [CI] = 19.6%-40.6%). Overall, participants were 27.4% (95% CI = 18.4%-36.3%) more successful at diagnosing pathology on stereoradiographs. Half of participants were shown standard 2D radiographs first, the others stereoradiographs first, but the difference in gradings between the two groups was not statistically significant. Stereoradiography appears to hold the potential to improve diagnosis of osteoarthritis in elephant feet, particularly by less experienced clinicians, and the technique is low-cost and applicable under field conditions.


Subject(s)
Elephants , Foot Diseases/veterinary , Osteoarthritis/veterinary , Radiography/veterinary , Stereotaxic Techniques/veterinary , Animals , Animals, Zoo , Foot Diseases/diagnostic imaging , Osteoarthritis/diagnostic imaging , Pilot Projects , Radiography/methods
16.
Curr Biol ; 31(9): 1872-1882.e5, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33848458

ABSTRACT

Leopards are the only big cats still widely distributed across the continents of Africa and Asia. They occur in a wide range of habitats and are often found in close proximity to humans. But despite their ubiquity, leopard phylogeography and population history have not yet been studied with genomic tools. Here, we present population-genomic data from 26 modern and historical samples encompassing the vast geographical distribution of this species. We find that Asian leopards are broadly monophyletic with respect to African leopards across almost their entire nuclear genomes. This profound genetic pattern persists despite the animals' high potential mobility, and despite evidence of transfer of African alleles into Middle Eastern and Central Asian leopard populations within the last 100,000 years. Our results further suggest that Asian leopards originated from a single out-of-Africa dispersal event 500-600 thousand years ago and are characterized by higher population structuring, stronger isolation by distance, and lower heterozygosity than African leopards. Taxonomic categories do not take into account the variability in depth of divergence among subspecies. The deep divergence between the African subspecies and Asian populations contrasts with the much shallower divergence among putative Asian subspecies. Reconciling genomic variation and taxonomy is likely to be a growing challenge in the genomics era.


Subject(s)
Panthera , Animals , Asia , Cats , Ecosystem , Genomics , Phylogeography
17.
Am J Primatol ; 83(6): e23255, 2021 06.
Article in English | MEDLINE | ID: mdl-33792947

ABSTRACT

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results while finding additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.


Subject(s)
COVID-19/veterinary , Lemur , Lorisidae , Primate Diseases/epidemiology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/epidemiology , Lemur/genetics , Lorisidae/genetics , Primate Diseases/virology , Risk Factors
18.
PLoS One ; 16(4): e0249296, 2021.
Article in English | MEDLINE | ID: mdl-33793614

ABSTRACT

Animal symbolism is a prominent feature of many human societies globally. In some cases, these symbolic attributes manifest in the technological domain, influencing the decision to use the bones of certain animals and not others for tool manufacture. In southern Africa, animals feature prominently in the cosmogenic narratives of both hunter-gatherer and Bantu-speaking farmer groups. Whenever these two culturally distinct groups came into contact with each other there would be an assimilation of cosmogenic concepts of power and the adoption of certain symbolically important animals. In this paper, we report on which animals were selected to make bone tools during the first millennium AD contact period in KwaZulu-Natal Province, South Africa, and explore the extent to which this selection may have been influenced by the symbolic associations of specific animals. Our results show selective targeting of specific animals for tool manufacture at some sites, with a narrowing of the range of selected species during the first millennium AD contact period. Certain antelope tribes, such as Aepycerotini, Cephalophini and Antilopini, appear to have been deliberately avoided, thus arguing against opportunistic selection. Nor does the range of selected animals appear to show any obvious mechanical considerations, as has been noted in similar studies. We highlight the potential of ZooMS for understanding the dynamics of animal symbolism in the past.


Subject(s)
Archaeology , Bone and Bones/metabolism , Animals , Bone and Bones/chemistry , Collagen/analysis , Collagen/metabolism , Fossils , Humans , Peptides/analysis , Proteomics , South Africa , Species Specificity , Symbolism
19.
PeerJ ; 9: e10504, 2021.
Article in English | MEDLINE | ID: mdl-33628628

ABSTRACT

AIM: We use ecological niche models and environmental stratification of palaeoclimate to reconstruct the changing range of the lion (Panthera leo) during the late Pleistocene and Holocene. LOCATION: The modern (early 21st century) range of the lion extends from southern Africa to the western Indian Subcontinent, yet through the 20th century this range has been drastically reduced in extent and become increasingly fragmented as a result of human impacts. METHODS: We use Global Environmental Stratification with MaxEnt ecological niche models to map environmental suitability of the lion under current and palaeoclimatic scenarios. By examining modelled lion range in terms of categorical environmental strata, we characterise suitable bioclimatic conditions for the lion in a descriptive manner. RESULTS: We find that lion habitat suitability has reduced throughout the Holocene, controlled by pluvial/interpluvial cycles. The aridification of the Sahara  6ka dramatically reduced lion range throughout North Africa. The association of Saharan aridification with the development of pastoralism and the growth of sedentary communities, who practised animal husbandry, would have placed additional and lasting anthropogenic pressures on the lion. MAIN CONCLUSIONS: This research highlights the need to integrate the full effects of the fluctuating vegetation and desiccation of the Sahara into palaeoclimatic models, and provides a starting point for further continental-scale analyses of shifting faunal ranges through North Africa and the Near East during the Holocene. This scale of ecological niche modelling does not explain the current pattern of genetic variation in the lion, and we conclude that narrow but substantial physical barriers, such as rivers, have likely played a major role in population vicariance throughout the Late Pleistocene.

20.
Elife ; 102021 02 18.
Article in English | MEDLINE | ID: mdl-33599612

ABSTRACT

In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is essential for conservation. The thousands of yearly mammalian roadkill provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristatus), both having subspecies with similar disjunct distributions in Eastern and Southern Africa. First, we obtained reference genomes with high contiguity and gene completeness by combining Nanopore long reads and Illumina short reads. Then, we showed that the two subspecies of aardwolf might warrant species status (P. cristatus and P. septentrionalis) by comparing their genome-wide genetic differentiation to pairs of well-defined species across Carnivora with a new Genetic Differentiation index (GDI) based on only a few resequenced individuals. Finally, we obtained a genome-scale Carnivora phylogeny including the new aardwolf species.


Subject(s)
Foxes/classification , Foxes/genetics , Genetic Variation , Genome , Hyaenidae/classification , Hyaenidae/genetics , Animals , High-Throughput Nucleotide Sequencing/veterinary , Nanopore Sequencing/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...