Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters











Publication year range
1.
Mol Cell ; 84(16): 3098-3114.e6, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39142278

ABSTRACT

Ferroptosis, an iron-dependent form of nonapoptotic cell death mediated by lipid peroxidation, has been implicated in the pathogenesis of multiple diseases. Subcellular organelles play pivotal roles in the regulation of ferroptosis, but the mechanisms underlying the contributions of the mitochondria remain poorly defined. Optic atrophy 1 (OPA1) is a mitochondrial dynamin-like GTPase that controls mitochondrial morphogenesis, fusion, and energetics. Here, we report that human and mouse cells lacking OPA1 are markedly resistant to ferroptosis. Reconstitution with OPA1 mutants demonstrates that ferroptosis sensitization requires the GTPase activity but is independent of OPA1-mediated mitochondrial fusion. Mechanistically, OPA1 confers susceptibility to ferroptosis by maintaining mitochondrial homeostasis and function, which contributes both to the generation of mitochondrial lipid reactive oxygen species (ROS) and suppression of an ATF4-mediated integrated stress response. Together, these results identify an OPA1-controlled mitochondrial axis of ferroptosis regulation and provide mechanistic insights for therapeutically manipulating this form of cell death in diseases.


Subject(s)
Activating Transcription Factor 4 , Ferroptosis , GTP Phosphohydrolases , Mitochondria , Reactive Oxygen Species , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Ferroptosis/genetics , Animals , Reactive Oxygen Species/metabolism , Humans , Mitochondria/metabolism , Mitochondria/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mitochondrial Dynamics , Mice , Mice, Knockout , Oxidative Stress , Signal Transduction , Lipid Peroxidation , Mutation
3.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091291

ABSTRACT

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Subject(s)
Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases , Mice , Animals , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Peptidyl-Prolyl Isomerase F , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Calcium/metabolism
4.
Immunity ; 56(11): 2523-2541.e8, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37924812

ABSTRACT

Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.


Subject(s)
Gasdermins , Pyroptosis , Neoplasm Proteins/metabolism , Cardiolipins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Inflammasomes/metabolism
6.
J Mol Cell Cardiol ; 184: 1-12, 2023 11.
Article in English | MEDLINE | ID: mdl-37709008

ABSTRACT

At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.


Subject(s)
Myocardial Infarction , bcl-2 Homologous Antagonist-Killer Protein , Animals , Mice , Apoptosis/physiology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Homozygote , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Necrosis/genetics , Sequence Deletion , bcl-2 Homologous Antagonist-Killer Protein/metabolism
8.
JACC CardioOncol ; 5(6): 715-731, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38205010

ABSTRACT

Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.

9.
Nat Commun ; 13(1): 3775, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798717

ABSTRACT

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Subject(s)
GTP Phosphohydrolases , Mitochondria , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction
11.
STAR Protoc ; 3(2): 101287, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35719268

ABSTRACT

Type 2 diabetes is mediated by insulin resistance and pancreatic ß-cell failure, the latter reflecting a combination of ß-cell dysfunction, dedifferentiation, and apoptosis. Quantification of ß-cell apoptosis in diabetes can be challenging both with respect to methodology and selection of clinically relevant inducers and readouts. This protocol describes approaches to measure cell death in immortalized ß-cells, primary mouse islet preparations, and pancreatic tissue. The resulting information may be useful for mechanistic studies and assessment of the contribution of ß-cell death to pathogenesis. For complete details on the use and execution of this protocol, please refer to McKimpson et al. (2021).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Apoptosis , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Mice
12.
Sci Adv ; 8(19): eabl8716, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35544578

ABSTRACT

Several subunits in the matrix domain of mitochondrial complex I (CI) have been posited to be redox sensors for CI, but how elevated levels of reactive oxygen species (ROS) impinge on CI assembly is unknown. We report that genetic disruption of the mitochondrial NADPH-generating enzyme, isocitrate dehydrogenase 2 (IDH2), in Drosophila flight muscles results in elevated ROS levels and impairment of assembly of the oxidative phosphorylation system (OXPHOS). Mechanistically, this begins with an inhibition of biosynthesis of the matrix domain of CI and progresses to involve multiple OXPHOS complexes. Despite activation of multiple compensatory mechanisms, including enhanced coenzyme Q biosynthesis and the mitochondrial unfolded protein response, ferroptotic cell death ensues. Disruption of enzymes that eliminate hydrogen peroxide, but not those that eliminate the superoxide radical, recapitulates the phenotype, thereby implicating hydrogen peroxide as the signaling molecule involved. Thus, IDH2 modulates the assembly of the matrix domain of CI and ultimately that of the entire OXPHOS.


Subject(s)
Hydrogen Peroxide , Oxidative Phosphorylation , Animals , Hydrogen Peroxide/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice , Mice, Knockout , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
13.
Antioxidants (Basel) ; 10(11)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34829679

ABSTRACT

Radiotherapy is routinely used for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the therapeutic efficacy is usually reduced by acquired radioresistance and locoregional recurrence. In this study, The Cancer Genome Atlas (TCGA) analysis showed that radiotherapy upregulated the miR-182/96/183 cluster and that miR-182 was the most significantly upregulated. Overexpression of miR-182-5p enhanced the radiosensitivity of HNSCC cells by increasing intracellular reactive oxygen species (ROS) levels, suggesting that expression of the miR-182 family is beneficial for radiotherapy. By intersecting the gene targeting results from three microRNA target prediction databases, we noticed that sestrin2 (SESN2), a molecule resistant to oxidative stress, was involved in 91 genes predicted in all three databases to be directly recognized by miR-182-5p. Knockdown of SESN2 enhanced radiation-induced ROS and cytotoxicity in HNSCC cells. In addition, the radiation-induced expression of SESN2 was repressed by overexpression of miR-182-5p. Reciprocal expression of the miR-182-5p and SESN2 genes was also analyzed in the TCGA database, and a high expression of miR-182-5p combined with a low expression of SESN2 was associated with a better survival rate in patients receiving radiotherapy. Taken together, the current data suggest that miR-182-5p may regulate radiation-induced antioxidant effects and mediate the efficacy of radiotherapy.

14.
J Endocrinol ; 251(2): 125-135, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34382577

ABSTRACT

Apoptosis repressor with caspase recruitment domain (ARC) is an endogenous inhibitor of cell death signaling that is expressed in insulin-producing ß cells. ARC has been shown to reduce ß-cell death in response to diabetogenic stimuli in vitro, but its role in maintaining glucose homeostasis in vivo has not been fully established. Here we examined whether loss of ARC in FVB background mice exacerbates high fat diet (HFD)-induced hyperglycemia in vivo over 24 weeks. Prior to commencing 24-week HFD, ARC-/- mice had lower body weight than wild type (WT) mice. This body weight difference was maintained until the end of the study and was associated with decreased epididymal and inguinal adipose tissue mass in ARC-/- mice. Non-fasting plasma glucose was not different between ARC-/- and WT mice prior to HFD feeding, and ARC-/- mice displayed a greater increase in plasma glucose over the first 4 weeks of HFD. Plasma glucose remained elevated in ARC-/- mice after 16 weeks of HFD feeding, at which time it had returned to baseline in WT mice. Following 24 weeks of HFD, non-fasting plasma glucose in ARC-/- mice returned to baseline and was not different from WT mice. At this final time point, no differences were observed between genotypes in plasma glucose or insulin under fasted conditions or following intravenous glucose administration. However, HFD-fed ARC-/- mice exhibited significantly decreased ß-cell area compared to WT mice. Thus, ARC deficiency delays, but does not prevent, metabolic adaptation to HFD feeding in mice, worsening transient HFD-induced hyperglycemia.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Diet, High-Fat/adverse effects , Hyperglycemia/etiology , Insulin-Secreting Cells/physiology , Muscle Proteins/physiology , Animals , Blood Glucose , Insulin Secretion , Mice
16.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33645548

ABSTRACT

Immune checkpoint inhibitors (ICIs) have transformed the treatment of various cancers, including malignancies once considered untreatable. These agents, however, are associated with inflammation and tissue damage in multiple organs. Myocarditis has emerged as a serious ICI-associated toxicity, because, while seemingly infrequent, it is often fulminant and lethal. The underlying basis of ICI-associated myocarditis is not completely understood. While the importance of T cells is clear, the inciting antigens, why they are recognized, and the mechanisms leading to cardiac cell injury remain poorly characterized. These issues underscore the need for basic and clinical studies to define pathogenesis, identify predictive biomarkers, improve diagnostic strategies, and develop effective treatments. An improved understanding of ICI-associated myocarditis will provide insights into the equilibrium between the immune and cardiovascular systems.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Myocarditis/chemically induced , Myocarditis/immunology , Biomarkers , Humans , Immune Checkpoint Inhibitors/therapeutic use , Myocarditis/diagnosis , Myocarditis/pathology
17.
Dev Cell ; 56(6): 747-760.e6, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33667344

ABSTRACT

Loss of insulin-secreting pancreatic ß cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains ß cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce ß cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. ß cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by ß cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of ß cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents ß cell death and metabolic abnormalities. These data uncover a pathway for ß cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.


Subject(s)
Apoptosis , Cell Nucleus/metabolism , Cytoskeletal Proteins/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Nerve Tissue Proteins/metabolism , alpha 1-Antitrypsin/chemistry , Animals , Apoptosis Regulatory Proteins/physiology , Cytoplasm/metabolism , Cytoskeletal Proteins/genetics , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/physiology , Nerve Tissue Proteins/genetics , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
18.
J Mol Cell Cardiol ; 155: 36-49, 2021 06.
Article in English | MEDLINE | ID: mdl-33652022

ABSTRACT

RATIONALE: Thioredoxin-interacting protein (Txnip) is a novel molecular target with translational potential in diverse human diseases. Txnip has several established cellular actions including binding to thioredoxin, a scavenger of reactive oxygen species (ROS). It has been long recognized from in vitro evidence that Txnip forms a disulfide bridge through cysteine 247 (C247) with reduced thioredoxin to inhibit the anti-oxidative properties of thioredoxin. However, the physiological significance of the Txnip-thioredoxin interaction remains largely undefined in vivo. OBJECTIVE: A single mutation of Txnip, C247S, abolishes the binding of Txnip with thioredoxin. Using a conditional and inducible approach with a mouse model of a mutant Txnip that does not bind thioredoxin, we tested whether the interaction of thioredoxin with Txnip is required for Txnip's pro-oxidative or cytotoxic effects in the heart. METHODS AND RESULTS: Overexpression of Txnip C247S in cells resulted in a reduction in ROS, due to an inability to inhibit thioredoxin. Hypoxia (1% O2, 24 h)-induced killing effects of Txnip were decreased by lower levels of cellular ROS in Txnip C247S-expressing cells compared with wild-type Txnip-expressing cells. Then, myocardial ischemic injuries were assessed in the animal model. Cardiomyocyte-specific Txnip C247S knock-in mice had better survival with smaller infarct size following myocardial infarction (MI) compared to control animals. The absence of Txnip's inhibition of thioredoxin promoted mitochondrial anti-oxidative capacities in cardiomyocytes, thereby protecting the heart from oxidative damage induced by MI. Furthermore, an unbiased RNA sequencing screen identified that hypoxia-inducible factor 1 signaling pathway was involved in Txnip C247S-mediated cardioprotective mechanisms. CONCLUSION: Txnip is a cysteine-containing redox protein that robustly regulates the thioredoxin system via a disulfide bond-switching mechanism in adult cardiomyocytes. Our results provide the direct in vivo evidence that regulation of redox state by Txnip is a crucial component for myocardial homeostasis under ischemic stress.


Subject(s)
Alleles , Amino Acid Substitution , Carrier Proteins/genetics , Disease Resistance/genetics , Mutation , Myocardial Infarction/etiology , Thioredoxins/genetics , Adenosine Triphosphate/metabolism , Animals , Biomarkers , Carrier Proteins/metabolism , Cell Line , Disease Models, Animal , Disease Susceptibility , Electrocardiography , Gene Expression , Glucose/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1/metabolism , Mice , Mice, Transgenic , Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Organ Specificity/genetics , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Ubiquitin Thiolesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL