Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Immunity ; 50(4): 1033-1042.e6, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30926232

ABSTRACT

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases.


Subject(s)
Blood Coagulation/physiology , Immune System/immunology , Interleukin-1alpha/physiology , Thrombin/physiology , Adaptive Immunity , Amino Acid Sequence , Animals , Blood Platelets/metabolism , Humans , Immunity, Innate , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Keratinocytes/metabolism , Macrophages/metabolism , Mammals/immunology , Mice , Protein Precursors/metabolism , Selection, Genetic , Sepsis/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Thrombopoiesis/immunology , Wound Healing/immunology
2.
Nat Commun ; 8: 15781, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28589929

ABSTRACT

Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet.


Subject(s)
Atherosclerosis/pathology , Lymphocytes/pathology , Adipose Tissue, White/pathology , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/etiology , Bone Marrow Transplantation , Cytokines/metabolism , Diet, High-Fat/adverse effects , Female , Interleukin-13/metabolism , Interleukin-5/metabolism , Lymphocytes/metabolism , Mice, Knockout, ApoE , Mice, Mutant Strains , Plaque, Atherosclerotic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...