Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosurgery ; 85(4): E641-E649, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31069381

ABSTRACT

BACKGROUND: Fluorescence-guided surgery (FGS) can improve extent of resection in gliomas. Tozuleristide (BLZ-100), a near-infrared imaging agent composed of the peptide chlorotoxin and a near-infrared fluorophore indocyanine green, is a candidate molecule for FGS of glioma and other tumor types. OBJECTIVE: To perform a phase 1 dose-escalation study to characterize the safety, pharmacokinetics, and fluorescence imaging of tozuleristide in adults with suspected glioma. METHODS: Patients received a single intravenous dose of tozuleristide 3 to 29 h before surgery. Fluorescence images of tumor and cavity in Situ before and after resection and of excised tissue ex Vivo were acquired, along with safety and pharmacokinetic measures. RESULTS: A total of 17 subjects received doses between 3 and 30 mg. No dose-limiting toxicity was observed, and no reported adverse events were considered related to tozuleristide. At doses of 9 mg and above, the terminal serum half-life for tozuleristide was approximately 30 min. Fluorescence signal was detected in both high- and low-grade glial tumors, with high-grade tumors generally showing greater fluorescence intensity compared to lower grade tumors. In high-grade tumors, signal intensity increased with increased dose levels of tozuleristide, regardless of the time of dosing relative to surgery. CONCLUSION: These results support the safety of tozuleristide at doses up to 30 mg and suggest that tozuleristide imaging may be useful for FGS of gliomas.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Indocyanine Green/analogs & derivatives , Neoplasm Recurrence, Local/diagnostic imaging , Optical Imaging/methods , Scorpion Venoms/administration & dosage , Scorpion Venoms/pharmacokinetics , Adult , Aged , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Dose-Response Relationship, Drug , Female , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/pharmacokinetics , Glioma/metabolism , Glioma/surgery , Humans , Indocyanine Green/administration & dosage , Indocyanine Green/pharmacokinetics , Injections, Intravenous , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/surgery
2.
Biomaterials ; 206: 146-159, 2019 06.
Article in English | MEDLINE | ID: mdl-30933776

ABSTRACT

Maximal surgical resection of glioma remains the single most effective treatment. Tools to guide the resection while avoiding removal of normal brain tissues can aid surgeons in achieving optimal results. One strategy to achieve this goal is to rely upon interoperative fluorescence staining of tumor cells in vivo, that can be visualized by the surgeon during resection. Towards this goal we have designed a biodegradable fluorescent mini nano imaging agent (NIA) with high specificity for U87MG glioma cells and previously unmet high light emission. The NIA is the conjugate of polymalic acid (PMLA) with chlorotoxin for tumor targeting, indocyanine green (ICG) for NIR fluorescence and the tri-leucin peptide as fluorescence enhancer. PMLA as a multivalent platform carries several molecules of ICG and the other ligands. The NIA recognizes multiple sites on glioma cell surface, demonstrated by the effects of single and combined competitors. Systemic IV injection into xenogeneic mouse model carrying human U87MG glioblastoma indicated vivid tumor cell binding and internalization of NIA resulting in intensive and long-lasting tumor fluorescence. The NIA is shown to greatly improve tumor removal supporting its utility in clinical applications.


Subject(s)
Glioblastoma/surgery , Malates/chemistry , Nanoconjugates/chemistry , Polymers/chemistry , Scorpion Venoms/chemistry , Animals , Cell Line, Tumor , Female , Humans , Indocyanine Green/chemistry , Mice , Spectroscopy, Near-Infrared , Xenograft Model Antitumor Assays
3.
Sci Rep ; 6: 38190, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929039

ABSTRACT

The Time-resolved fluorescence spectroscopy (TR-FS) has the potential to differentiate tumor and normal tissue in real time during surgical excision. In this manuscript, we describe the design of a novel TR-FS device, along with preliminary data on detection accuracy for fluorophores in a mixture. The instrument is capable of near real-time fluorescence lifetime acquisition in multiple spectral bands and analysis. It is also able to recover fluorescence lifetime with sub-20ps accuracy as validated with individual organic fluorescence dyes and dye mixtures yielding lifetime values for standard fluorescence dyes that closely match with published data. We also show that TR-FS is able to quantify the relative concentration of fluorescence dyes in a mixture by the unmixing of lifetime decays. We show that the TR-FS prototype is able to identify in near-real time the concentrations of dyes in a complex mixture based on previously trained data. As a result, we demonstrate that in complex mixtures of fluorophores, the relative concentration information is encoded in the fluorescence lifetime across multiple spectral bands. We show for the first time the temporal and spectral measurements of a mixture of fluorochromes and the ability to differentiate relative concentrations of each fluorochrome mixture in real time.

4.
Rev Sci Instrum ; 84(5): 053107, 2013 May.
Article in English | MEDLINE | ID: mdl-23742532

ABSTRACT

The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

5.
Appl Opt ; 52(33): 8146-53, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24513771

ABSTRACT

In recent studies, the advanced wide field of view architectures for image reconstruction and exploitation (AWARE) multiscale camera, which is composed of a monocentric objective lens and an array of microcameras, was developed for the realization of snapshot wide field of view and high resolution imaging. This paper describes accelerated autofocus (AF) methods for the AWARE system based on a hierarchical spatial algorithm and an iterative temporal algorithm. In the algorithms, sensor positions of each microcamera are hierarchically scanned with contrast detection to effectively search for a focusing distance. The positions are then updated iteratively for dynamic scenes using temporal information. The algorithms are theoretically analyzed and experimentally demonstrated. The developed AF methods can be used for the realization of the temporal gigapixel imaging by the AWARE system.

SELECTION OF CITATIONS
SEARCH DETAIL
...