Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 27(2): 603-613, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33048707

ABSTRACT

To address the problem of ever-growing scientific data sizes making data movement a major hindrance to analysis, we introduce a novel encoding for scalar fields: a unified tree of resolution and precision, specifically constructed so that valid cuts correspond to sensible approximations of the original field in the precision-resolution space. Furthermore, we introduce a highly flexible encoding of such trees that forms a parameterized family of data hierarchies. We discuss how different parameter choices lead to different trade-offs in practice, and show how specific choices result in known data representation schemes such as zfp [52], idx [58], and jpeg2000 [76]. Finally, we provide system-level details and empirical evidence on how such hierarchies facilitate common approximate queries with minimal data movement and time, using real-world data sets ranging from a few gigabytes to nearly a terabyte in size. Experiments suggest that our new strategy of combining reductions in resolution and precision is competitive with state-of-the-art compression techniques with respect to data quality, while being significantly more flexible and orders of magnitude faster, and requiring significantly reduced resources.

2.
IEEE Trans Vis Comput Graph ; 26(1): 173-183, 2020 01.
Article in English | MEDLINE | ID: mdl-31403428

ABSTRACT

Topological approaches to data analysis can answer complex questions about the number, connectivity, and scale of intrinsic features in scalar data. However, the global nature of many topological structures makes their computation challenging at scale, and thus often limits the size of data that can be processed. One key quality to achieving scalability and performance on modern architectures is data locality, i.e., a process operates on data that resides in a nearby memory system, avoiding frequent jumps in data access patterns. From this perspective, topological computations are particularly challenging because the implied data structures represent features that can span the entire data set, often requiring a global traversal phase that limits their scalability. Traditionally, expensive preprocessing is considered an acceptable trade-off as it accelerates all subsequent queries. Most published use cases, however, explore only a fraction of all possible queries, most often those returning small, local features. In these cases, much of the global information is not utilized, yet computing it dominates the overall response time. We address this challenge for merge trees, one of the most commonly used topological structures. In particular, we propose an alternative representation, the merge forest, a collection of local trees corresponding to regions in a domain decomposition. Local trees are connected by a bridge set that allows us to recover any necessary global information at query time. The resulting system couples (i) a preprocessing that scales linearly in practice with (ii) fast runtime queries that provide the same functionality as traditional queries of a global merge tree. We test the scalability of our approach on a shared-memory parallel computer and demonstrate how data structure locality enables the analysis of large data with an order of magnitude performance improvement over the status quo. Furthermore, a merge forest reduces the memory overhead compared to a global merge tree and enables the processing of data sets that are an order of magnitude larger than possible with previous algorithms.


Subject(s)
Databases, Factual , Image Processing, Computer-Assisted/methods , Algorithms , Computer Graphics , Foot Bones/diagnostic imaging , Humans
3.
Article in English | MEDLINE | ID: mdl-30136951

ABSTRACT

There currently exist two dominant strategies to reduce data sizes in analysis and visualization: reducing the precision of the data, e.g., through quantization, or reducing its resolution, e.g., by subsampling. Both have advantages and disadvantages and both face fundamental limits at which the reduced information ceases to be useful. The paper explores the additional gains that could be achieved by combining both strategies. In particular, we present a common framework that allows us to study the trade-off in reducing precision and/or resolution in a principled manner. We represent data reduction schemes as progressive streams of bits and study how various bit orderings such as by resolution, by precision, etc., impact the resulting approximation error across a variety of data sets as well as analysis tasks. Furthermore, we compute streams that are optimized for different tasks to serve as lower bounds on the achievable error. Scientific data management systems can use the results presented in this paper as guidance on how to store and stream data to make efficient use of the limited storage and bandwidth in practice.

4.
IEEE Trans Vis Comput Graph ; 24(1): 994-1003, 2018 01.
Article in English | MEDLINE | ID: mdl-28866520

ABSTRACT

Tracing neurons in large-scale microscopy data is crucial to establishing a wiring diagram of the brain, which is needed to understand how neural circuits in the brain process information and generate behavior. Automatic techniques often fail for large and complex datasets, and connectomics researchers may spend weeks or months manually tracing neurons using 2D image stacks. We present a design study of a new virtual reality (VR) system, developed in collaboration with trained neuroanatomists, to trace neurons in microscope scans of the visual cortex of primates. We hypothesize that using consumer-grade VR technology to interact with neurons directly in 3D will help neuroscientists better resolve complex cases and enable them to trace neurons faster and with less physical and mental strain. We discuss both the design process and technical challenges in developing an interactive system to navigate and manipulate terabyte-sized image volumes in VR. Using a number of different datasets, we demonstrate that, compared to widely used commercial software, consumer-grade VR presents a promising alternative for scientists.


Subject(s)
Computer Graphics , Neuroanatomy/methods , Neurons/cytology , User-Computer Interface , Humans , Microscopy/methods , Virtual Reality , Vision, Ocular/physiology
5.
IEEE Trans Vis Comput Graph ; 23(7): 1782-1795, 2017 07.
Article in English | MEDLINE | ID: mdl-28113433

ABSTRACT

Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

SELECTION OF CITATIONS
SEARCH DETAIL
...