Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Pflugers Arch ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38355819

ABSTRACT

Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.

2.
Physiol Rep ; 11(17): e15809, 2023 09.
Article in English | MEDLINE | ID: mdl-37688424

ABSTRACT

OBJECTIVES: Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 µg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS: Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS: Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.


Subject(s)
Mesalamine , Myocardial Infarction , Male , Animals , Mice , Mice, Inbred C57BL , Mesalamine/pharmacology , Mesalamine/therapeutic use , Myocardial Infarction/drug therapy , Heart , Myocardium
3.
Circ Res ; 132(4): 400-414, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36715019

ABSTRACT

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Subject(s)
Myocytes, Cardiac , Phosphoric Diester Hydrolases , Mice , Animals , Humans , Phosphoric Diester Hydrolases/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Catecholamines/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/prevention & control , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/metabolism , Cyclic GMP/metabolism , Natriuretic Peptide, C-Type/pharmacology
4.
Nat Commun ; 13(1): 7648, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496449

ABSTRACT

After myocardial infarction the innate immune response is pivotal in clearing of tissue debris as well as scar formation, but exaggerated cytokine and chemokine secretion with subsequent leukocyte infiltration also leads to further tissue damage. Here, we address the value of targeting a previously unknown a disintegrin and metalloprotease 10 (ADAM10)/CX3CL1 axis in the regulation of neutrophil recruitment early after MI. We show that myocardial ADAM10 is distinctly upregulated in myocardial biopsies from patients with ischemia-driven cardiomyopathy. Intriguingly, upon MI in mice, pharmacological ADAM10 inhibition as well as genetic cardiomycyte-specific ADAM10 deletion improves survival with markedly enhanced heart function and reduced scar size. Mechanistically, abolished ADAM10-mediated CX3CL1 ectodomain shedding leads to diminished IL-1ß-dependent inflammation, reduced neutrophil bone marrow egress as well as myocardial tissue infiltration. Thus, our data shows a conceptual insight into how acute MI induces chemotactic signaling via ectodomain shedding in cardiomyocytes.


Subject(s)
ADAM10 Protein , Myocardial Infarction , Animals , Mice , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Leukocytes , Membrane Proteins/genetics , Myocardial Infarction/genetics , Humans
5.
Cell Signal ; 90: 110203, 2022 02.
Article in English | MEDLINE | ID: mdl-34822978

ABSTRACT

Reversible phosphorylation of ion channels and calcium-handling proteins provides precise post-translational regulation of cardiac excitation and contractility. Serine/threonine phosphatases govern dephosphorylation of the majority of cardiac proteins. Accordingly, dysfunction of this regulation contributes to the development and progression of heart failure and atrial fibrillation. On the molecular level, these changes include alterations in the expression level and phosphorylation status of Ca2+ handling and excitation-contraction coupling proteins provoked by dysregulation of phosphatases. The serine/threonine protein phosphatase PP1 is one a major player in the regulation of cardiac excitation-contraction coupling. PP1 essentially impacts on cardiac physiology and pathophysiology via interactions with the cardiac ion channels Cav1.2, NKA, NCX and KCNQ1, sarcoplasmic reticulum-bound Ca2+ handling proteins such as RyR2, SERCA and PLB as well as the contractile proteins MLC2, TnI and MyBP-C. PP1 itself but also PP1-regulatory proteins like inhibitor-1, inhibitor-2 and heat-shock protein 20 are dysregulated in cardiac disease. Therefore, they represent interesting targets to gain more insights in heart pathophysiology and to identify new treatment strategies for patients with heart failure or atrial fibrillation. We describe the genetic and holoenzymatic structure of PP1 and review its role in the heart and cardiac disease. Finally, we highlight the importance of the PP1 regulatory proteins for disease manifestation, provide an overview of genetic models to study the role of PP1 for the development of heart failure and atrial fibrillation and discuss possibilities of pharmacological interventions.


Subject(s)
Calcium , Heart Failure , Calcium/metabolism , Heart , Heart Failure/metabolism , Humans , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
6.
Naunyn Schmiedebergs Arch Pharmacol ; 394(11): 2233-2244, 2021 11.
Article in English | MEDLINE | ID: mdl-34410453

ABSTRACT

Skin fibrosis is a complex biological remodeling process occurring in disease like systemic sclerosis, morphea, or eosinophilic fasciitis. Since the knowledge about the underlying pathomechanisms is still incomplete, there is currently no therapy, which prevents or reverses skin fibrosis sufficiently. The present study investigates the role of polo-like kinase 2 (PLK2) and the pro-fibrotic cytokine osteopontin (OPN) in the pathogenesis of cutaneous fibrosis and demonstrates the antifibrotic effects of systemic mesalazine treatment in vivo. Isolated primary dermal fibroblasts of PLK2 wild-type (WT) and knockout (KO) mice were characterized in vitro. Skin thickness and histoarchitecture were studied in paraffin-embedded skin sections. The effects of mesalazine treatment were examined in isolated fibroblasts and PLK2 KO mice, which were fed 100 µg/g mesalazine for 6 months via the drinking water. Compared to WT, PLK2 KO fibroblasts displayed higher spontaneous myofibroblast differentiation, reduced proliferation rates, and overexpression of the fibrotic cytokine OPN. In vitro, 72 h of treatment with 10 mmol/L mesalazine induced phenotype conversion in PLK2 KO fibroblasts and attenuated OPN expression by inhibiting ERK1/2. In vivo, dermal myofibroblast differentiation, collagen accumulation, and skin thickening were prevented by mesalazine in PLK2 KO. Plasma creatinine levels indicated good tolerability of systemic long-term mesalazine treatment. The current study reveals a spontaneous fibrotic skin phenotype and ERK1/2-dependent OPN overexpression in PLK2 KO mice. We provide experimental evidence for the antifibrotic effectiveness of systemic mesalazine treatment to prevent fibrosis of the skin, suggesting further investigation in experimental and clinical settings.


Subject(s)
Fibroblasts/drug effects , Mesalamine/pharmacology , Protein Serine-Threonine Kinases/genetics , Skin/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Cell Differentiation/drug effects , Collagen/metabolism , Creatinine/blood , Disease Models, Animal , Female , Fibroblasts/pathology , Fibrosis/prevention & control , Male , Mesalamine/administration & dosage , Mesalamine/toxicity , Mice , Mice, Knockout , Osteopontin/genetics , Skin/pathology
7.
Circ Res ; 129(8): 804-820, 2021 10.
Article in English | MEDLINE | ID: mdl-34433292
8.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205118

ABSTRACT

During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE-cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.


Subject(s)
Antigens, CD/genetics , Breast Neoplasms/genetics , Cadherins/genetics , Cell Adhesion/genetics , Endothelium, Vascular/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Coculture Techniques , Endothelium, Vascular/pathology , Endothelium, Vascular/ultrastructure , Female , Gene Expression Regulation, Neoplastic/genetics , Human Umbilical Vein Endothelial Cells/cytology , Humans , Molecular Imaging/methods , Neoplasm Metastasis
9.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062838

ABSTRACT

BACKGROUND: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to ß-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. METHODS: Cellular arrhythmia, ion currents, and Ca2+-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. RESULTS: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in ICaL seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in INaL and Ca2+-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. CONCLUSION: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.


Subject(s)
Arrhythmias, Cardiac/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Guanine Nucleotide Exchange Factors/genetics , Action Potentials/drug effects , Action Potentials/genetics , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cyclic AMP/genetics , Cyclic GMP/genetics , Gene Expression Regulation/genetics , Heart/physiopathology , Humans , Isoproterenol/toxicity , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
10.
Cells ; 10(3)2021 03 11.
Article in English | MEDLINE | ID: mdl-33799608

ABSTRACT

Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.


Subject(s)
Collagen/metabolism , Fibroblasts/enzymology , Lung/enzymology , Protein Serine-Threonine Kinases/deficiency , Pulmonary Fibrosis/enzymology , Adult , Animals , Cell Proliferation , Cells, Cultured , Female , Fibroblasts/pathology , Gene Deletion , Genetic Predisposition to Disease , Humans , Interleukin-18/genetics , Interleukin-18/metabolism , Lung/pathology , Male , Mice, 129 Strain , Mice, Knockout , Middle Aged , Myofibroblasts/enzymology , Myofibroblasts/pathology , Osteopontin/genetics , Osteopontin/metabolism , Phenotype , Protein Serine-Threonine Kinases/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Signal Transduction
11.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 533-543, 2021 03.
Article in English | MEDLINE | ID: mdl-33064167

ABSTRACT

Cardiovascular diseases are exacerbated and driven by cardiac fibrosis. TGFß induces fibroblast activation and differentiation into myofibroblasts that secrete excessive extracellular matrix proteins leading to stiffening of the heart, concomitant cardiac dysfunction, and arrhythmias. However, effective pharmacotherapy for preventing or reversing cardiac fibrosis is presently unavailable. Therefore, drug repurposing could be a cost- and time-saving approach to discover antifibrotic interventions. The aim of this study was to investigate the antifibrotic potential of mesalazine in a cardiac fibroblast stress model. TGFß was used to induce a profibrotic phenotype in a human cardiac fibroblast cell line. After induction, cells were treated with mesalazine or solvent control. Fibroblast proliferation, key fibrosis protein expression, extracellular collagen deposition, and mechanical properties were subsequently determined. In response to TGFß treatment, fibroblasts underwent a profound phenoconversion towards myofibroblasts, determined by the expression of fibrillary αSMA. Mesalazine reduced differentiation nearly by half and diminished fibroblast proliferation by a third. Additionally, TGFß led to increased cell stiffness and adhesion, which were reversed by mesalazine treatment. Collagen 1 expression and deposition-key drivers of fibrosis-were significantly increased upon TGFß stimulation and reduced to control levels by mesalazine. SMAD2/3 and ERK1/2 phosphorylation, along with reduced nuclear NFκB translocation, were identified as potential modes of action. The current study provides experimental pre-clinical evidence for antifibrotic effects of mesalazine in an in vitro model of cardiac fibrosis. Furthermore, it sheds light on possible mechanisms of action and suggests further investigation in experimental and clinical settings.


Subject(s)
Cardiotonic Agents/therapeutic use , Mesalamine/therapeutic use , Myocardium/pathology , Actins/metabolism , Cardiotonic Agents/pharmacology , Cell Differentiation/drug effects , Cell Line , Collagen Type I/metabolism , Drug Repositioning , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibrosis , Humans , Mesalamine/pharmacology , Myocardium/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , NF-kappa B/metabolism , Smad2 Protein/antagonists & inhibitors , Smad2 Protein/metabolism , Smad3 Protein/antagonists & inhibitors , Smad3 Protein/metabolism , Transforming Growth Factor beta
12.
FEBS Open Bio ; 10(7): 1210-1218, 2020 07.
Article in English | MEDLINE | ID: mdl-32421922

ABSTRACT

Atrial fibrillation (AF) is regularly accompanied by cardiac fibrosis and concomitant heart failure. Due to the heterogeneous nature and complexity of fibrosis, the knowledge about the underlying mechanisms is limited, which prevents effective pharmacotherapy. A deeper understanding of cardiac fibroblasts is essential to meet this need. We previously described phenotypic and functional differences between atrial fibroblasts from patients in sinus rhythm and with AF. Herein, we established and characterized a novel human atrial fibroblast line, which displays typical fibroblast morphology and function comparable to primary cells but with improved proliferation capacity and low spontaneous myofibroblast differentiation. These traits make our model suitable for the study of fibrosis mechanisms and for drug screening aimed at developing effective antifibrotic pharmacotherapy.


Subject(s)
Fibroblasts/metabolism , Fibrosis/metabolism , Heart Atria/metabolism , Models, Biological , Cell Differentiation , Cell Proliferation , Cells, Cultured , Fibroblasts/pathology , Fibrosis/pathology , Heart Atria/pathology , Humans
13.
Cell Rep ; 26(13): 3672-3683.e7, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917320

ABSTRACT

Glioblastoma (GBM) is highly refractory to therapy and associated with poor clinical outcome. Here, we reveal a critical function of the promitotic and adhesion-mediating discoidin domain receptor 1 (DDR1) in modulating GBM therapy resistance. In GBM cultures and clinical samples, we show a DDR1 and GBM stem cell marker co-expression that correlates with patient outcome. We demonstrate that inhibition of DDR1 in combination with radiochemotherapy with temozolomide in GBM models enhances sensitivity and prolongs survival superior to conventional therapy. We identify a 14-3-3-Beclin-1-Akt1 protein complex assembling with DDR1 to be required for prosurvival Akt and mTOR signaling and regulation of autophagy-associated therapy sensitivity. Our results uncover a mechanism driven by DDR1 that controls GBM therapy resistance and provide a rationale target for the development of therapy-sensitizing agents.


Subject(s)
14-3-3 Proteins/metabolism , Beclin-1/metabolism , Brain Neoplasms/metabolism , Discoidin Domain Receptor 1/metabolism , Glioblastoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Autophagy , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Cell Line , Drug Delivery Systems , Drug Resistance, Neoplasm , Female , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Humans , Male , Mice , Mice, Nude , Prognosis , Radiation Tolerance , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
14.
Oncotarget ; 9(26): 18099-18114, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29719593

ABSTRACT

Intrinsic and acquired resistances are major obstacles in cancer therapy. Genetic characterization is commonly used to identify predictive or prognostic biomarker signatures and potential cancer targets in samples from therapy-naïve patients. By far less common are such investigations to identify specific, predictive and/or prognostic gene signatures in patients or cancer cells refractory to a specific molecular-targeted intervention. This, however, might have a great value to foster the development of tailored, personalized cancer therapy. Based on our identification of a differential radiosensitization by single and combined ß1 integrin (AIIB2) and EGFR (Cetuximab) targeting in more physiological, three-dimensional head and neck squamous cell carcinoma (HNSCC) cell cultures, we performed comparative whole exome sequencing, phosphoproteome analyses and RNAi knockdown screens in responder and non-responder cell lines. We found a higher rate of gene mutations with putative protein-changing characteristics in non-responders and different mutational profiles of responders and non-responders. These profiles allow stratification of HNSCC patients and identification of potential targets to address treatment resistance. Consecutively, pharmacological inhibition of mTOR and KEAP1 effectively diminished non-responder insusceptibility to ß1 integrin and EGFR targeting for radiosensitization. Our data pinpoint the added value of genetic biomarker identification after selection for cancer subgroup responsiveness to targeted therapies.

15.
Oncotarget ; 8(30): 49224-49237, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28514757

ABSTRACT

Resistance of cancer stem-like and cancer tumor bulk cells to radiochemotherapy and destructive infiltration of the brain fundamentally influence the treatment efficiency to cure of patients suffering from Glioblastoma (GBM). The interplay of adhesion and stress-related signaling and activation of bypass cascades that counteract therapeutic approaches remain to be identified in GBM cells. We here show that combined inhibition of the adhesion receptor ß1 integrin and the stress-mediator c-Jun N-terminal kinase (JNK) induces radiosensitization and blocks invasion in stem-like and patient-derived GBM cultures as well as in GBM cell lines. In vivo, this treatment approach not only significantly delays tumor growth but also increases median survival of orthotopic, radiochemotherapy-treated GBM mice. Both, in vitro and in vivo, effects seen with ß1 integrin/JNK co-inhibition are superior to the monotherapy. Mechanistically, the in vitro radiosensitization provoked by ß1 integrin/JNK targeting is caused by defective DNA repair associated with chromatin changes, enhanced ATM phosphorylation and prolonged G2/M cell cycle arrest. Our findings identify a ß1 integrin/JNK co-dependent bypass signaling for GBM therapy resistance, which might be therapeutically exploitable.


Subject(s)
Adaptation, Biological , Brain Neoplasms/metabolism , Glioma/metabolism , Integrin beta1/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Radiation Tolerance , Stress, Physiological , Animals , Brain Neoplasms/radiotherapy , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Cell Movement/radiation effects , Chemoradiotherapy , Chromatin Assembly and Disassembly , DNA Repair , Disease Models, Animal , Glioma/mortality , Glioma/pathology , Glioma/radiotherapy , Histone Deacetylases , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mice , Models, Biological , Signal Transduction/drug effects , Signal Transduction/radiation effects , Stress, Physiological/radiation effects , Treatment Outcome , Xenograft Model Antitumor Assays
16.
Dalton Trans ; 45(33): 13091-103, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27214822

ABSTRACT

Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Monoterpenes/chemistry , Naphthoquinones/chemistry , Ruthenium/chemistry , Antineoplastic Agents/pharmacology , Ascorbic Acid/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/pharmacology , Cymenes , Drug Resistance, Neoplasm , Glutathione/chemistry , Humans , Monoterpenes/pharmacology , Naphthoquinones/pharmacology , Ruthenium/pharmacology
17.
Invest New Drugs ; 33(4): 835-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26091914

ABSTRACT

BACKGROUND: Hypoxic and necrotic regions that accrue within solid tumors in vivo are known to be associated with metastasis formation, radio- and chemotherapy resistance, and drug metabolism. Therefore, integration of these tumor characteristics into in vitro drug screening models is advantageous for any reliable investigation of the anticancer activity of novel drug candidates. In general, usage of cell culture models with in vivo like characteristics has become essential in preclinical drug studies and allows evaluation of complex problems such as tumor selectivity and anti-invasive properties of the drug candidates. MATERIALS AND METHODS: In this study, we investigated the anticancer activity of clinically approved, investigational and experimental drugs based on platinum (cisplatin, oxaliplatin and KP1537), gallium (KP46), ruthenium (KP1339) and lanthanum (KP772) in different cell culture models such as monolayers, multicellular spheroids, as well as invasion and metastasis models. Results Application of the Alamar Blue assay to multicellular spheroids and a spheroid-based invasion assay resulted in an altered rating of compounds with regard to their cytotoxicity and ability to inhibit invasion when compared with monolayer-based cytotoxicity and transwell assays. For example, the gallium-based drug candidate KP46 showed in spheroid cultures significantly enhanced properties to inhibit protrusion formation and fibroblast mediated invasiveness, and improved cancer cell selectivity. CONCLUSION: Taken together, our results demonstrate the advantages of spheroid-based assays and underline the necessity of using different experimental models for reliable preclinical investigations assessing and better predicting the anticancer potential of new compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Cell Cycle/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Cisplatin/pharmacology , Coculture Techniques , Humans , Hypoxia , Organometallic Compounds/pharmacology , Organoplatinum Compounds/pharmacology , Oxaliplatin , Oxyquinoline/analogs & derivatives , Oxyquinoline/pharmacology , Phenanthrolines/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/physiology , Tumor Cells, Cultured
18.
Inorg Chem ; 52(15): 8895-908, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23829568

ABSTRACT

Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.


Subject(s)
Copper/chemistry , DNA-Binding Proteins/antagonists & inhibitors , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Thiosemicarbazones/chemistry , Water/chemistry , Antigens, Neoplasm , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II , Humans , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Serum Albumin/metabolism , Solubility , Spectrum Analysis , Stereoisomerism , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...