Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(20): 6043-6050, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717152

ABSTRACT

Studying antiferromagnetic domains is essential for fundamental physics and potential spintronics applications. Despite their importance, few systematic studies have been performed on antiferromagnet (AFM) domains with high spatial resolution in van der Waals (vdW) materials, and direct probing of the Néel vectors remains challenging. In this work, we found multidomain states in the vdW AFM NiPS3, a material extensively investigated for its unique magnetic exciton. We employed photoemission electron microscopy combined with the X-ray magnetic linear dichroism (XMLD-PEEM) to image the NiPS3's magnetic structure. The nanometer-spatial resolution of XMLD-PEEM allows us to determine local Néel vector orientations and discover thermally fluctuating Néel vectors that are independent of the crystal symmetry even at 65 K, well below the TN of 155 K. We demonstrate that an in-plane orbital moment of the Ni ion is responsible for the weak magnetocrystalline anisotropy. The observed thermal fluctuations of the antiferromagnetic domains may explain the broadening of magnetic exciton peaks at higher temperatures.

2.
Nature ; 627(8002): 67-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448698

ABSTRACT

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

3.
Adv Mater ; 36(23): e2311157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402421

ABSTRACT

Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO3 (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L3 edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71° between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays.

SELECTION OF CITATIONS
SEARCH DETAIL