Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914563

ABSTRACT

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Subject(s)
Protein Binding , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/chemistry , Protein Subunits/metabolism , Protein Subunits/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/chemistry , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Protein Multimerization , Models, Molecular , Transcription, Genetic , Amino Acid Sequence
2.
Nat Struct Mol Biol ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448574

ABSTRACT

JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1-zinc-knuckle-PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98-JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.

3.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Article in English | MEDLINE | ID: mdl-37524969

ABSTRACT

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Subject(s)
Inhibitor of Apoptosis Proteins , Thiazoles , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Apoptosis/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194961, 2023 09.
Article in English | MEDLINE | ID: mdl-37482120

ABSTRACT

Taf14 is a subunit of multiple fundamental complexes implicated in transcriptional regulation and DNA damage repair in yeast cells. Here, we investigate the association of Taf14 with the consensus sequence present in other subunits of these complexes and describe the mechanistic features that affect this association. We demonstrate that the precise molecular mechanisms and biological outcomes underlying the Taf14 interactions depend on the accessibility of binding interfaces, the ability to recognize other ligands, and a degree of sensitivity to temperature and chemical and osmotic stresses. Our findings aid in a better understanding of how the distribution of Taf14 among the complexes is mediated.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIID/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation
5.
Nat Commun ; 14(1): 697, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36754959

ABSTRACT

Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.


Subject(s)
Acetyltransferases , Histone Acetyltransferases , Leukemia , Humans , Acetylation , Acetyltransferases/metabolism , CpG Islands/genetics , Histone Acetyltransferases/metabolism , Leukemia/genetics , Translocation, Genetic
6.
Nat Commun ; 13(1): 3177, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676274

ABSTRACT

The assembly and function of the yeast general transcription factor TFIID complex requires specific contacts between its Taf14 and Taf2 subunits, however, the mechanism underlying these contacts remains unclear. Here, we determined the molecular and structural basis by which the YEATS and ET domains of Taf14 bind to the C-terminal tail of Taf2 and identified a unique DNA-binding activity of the linker region connecting the two domains. We show that in the absence of ligands the linker region of Taf14 is occluded by the surrounding domains, and therefore the DNA binding function of Taf14 is autoinhibited. Binding of Taf2 promotes a conformational rearrangement in Taf14, resulting in a release of the linker for the engagement with DNA and the nucleosome. Genetic in vivo data indicate that the association of Taf14 with both Taf2 and DNA is essential for transcriptional regulation. Our findings provide a basis for deciphering the role of individual TFIID subunits in mediating gene transcription.


Subject(s)
Saccharomyces cerevisiae Proteins , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , DNA/metabolism , Gene Expression Regulation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism
7.
ACS Appl Mater Interfaces ; 13(32): 38477-38490, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34370459

ABSTRACT

Heteroepitaxy of ß-phase gallium oxide (ß-Ga2O3) thin films on foreign substrates shows promise for the development of next-generation deep ultraviolet solar blind photodetectors and power electronic devices. In this work, the influences of the film thickness and crystallinity on the thermal conductivity of (2̅01)-oriented ß-Ga2O3 heteroepitaxial thin films were investigated. Unintentionally doped ß-Ga2O3 thin films were grown on c-plane sapphire substrates with off-axis angles of 0° and 6° toward ⟨112̅0⟩ via metal-organic vapor phase epitaxy (MOVPE) and low-pressure chemical vapor deposition. The surface morphology and crystal quality of the ß-Ga2O3 thin films were characterized using scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. The thermal conductivities of the ß-Ga2O3 films were measured via time-domain thermoreflectance. The interface quality was studied using scanning transmission electron microscopy. The measured thermal conductivities of the submicron-thick ß-Ga2O3 thin films were relatively low as compared to the intrinsic bulk value. The measured thin film thermal conductivities were compared with the Debye-Callaway model incorporating phononic parameters derived from first-principles calculations. The comparison suggests that the reduction in the thin film thermal conductivity can be partially attributed to the enhanced phonon-boundary scattering when the film thickness decreases. They were found to be a strong function of not only the layer thickness but also the film quality, resulting from growth on substrates with different offcut angles. Growth of ß-Ga2O3 films on 6° offcut sapphire substrates was found to result in higher crystallinity and thermal conductivity than films grown on on-axis c-plane sapphire. However, the ß-Ga2O3 films grown on 6° offcut sapphire exhibit a lower thermal boundary conductance at the ß-Ga2O3/sapphire heterointerface. In addition, the thermal conductivity of MOVPE-grown (2̅01)-oriented ß-(AlxGa1-x)2O3 thin films with Al compositions ranging from 2% to 43% was characterized. Because of phonon-alloy disorder scattering, the ß-(AlxGa1-x)2O3 films exhibit lower thermal conductivities (2.8-4.7 W/m·K) than the ß-Ga2O3 thin films. The dominance of the alloy disorder scattering in ß-(AlxGa1-x)2O3 is further evidenced by the weak temperature dependence of the thermal conductivity. This work provides fundamental insight into the physical interactions that govern phonon transport within heteroepitaxially grown ß-phase Ga2O3 and (AlxGa1-x)2O3 thin films and lays the groundwork for the thermal modeling and design of ß-Ga2O3 electronic and optoelectronic devices.

8.
J Med Chem ; 64(15): 10997-11013, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34279931

ABSTRACT

Eleven-nineteen leukemia (ENL) protein is a histone acetylation reader essential for disease maintenance in acute leukemias, in particular, the mixed-lineage leukemia (MLL)-rearranged leukemia. In this study, we carried out high-throughput screening of a small-molecule library to identify inhibitors for the ENL YEATS domain. Structure-activity relationship studies of the hits and structure-based inhibitor design led to two compounds, 11 and 24, with IC50 values below 100 nM in inhibiting the ENL-acetyl-H3 interaction. Both compounds, and their precursor compound 7, displayed strong selectivity toward the ENL YEATS domain over all other human YEATS domains. Moreover, 7 exhibited on-target inhibition of ENL in cultured cells and a synergistic effect with the bromodomain and extraterminal domain inhibitor JQ1 in killing leukemia cells. Together, we have developed selective chemical probes for the ENL YEATS domain, providing the basis for further medicinal chemistry-based optimization to advance both basic and translational research of ENL.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Small Molecule Libraries/pharmacology , Transcriptional Elongation Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Molecular Structure , Protein Domains/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transcriptional Elongation Factors/metabolism
9.
Nat Commun ; 12(1): 4130, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34226546

ABSTRACT

Chromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Subject(s)
Acute Disease , Leukemia, Myeloid, Acute/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Translocation, Genetic/genetics , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Chromatin , HEK293 Cells , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Methylation , Mice , Models, Molecular , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/metabolism , Nucleosomes , Protein Conformation
10.
Curr Opin Struct Biol ; 71: 1-6, 2021 12.
Article in English | MEDLINE | ID: mdl-33993059

ABSTRACT

The past two decades have witnessed rapid advances in the identification and characterization of epigenetic readers, capable of recognizing or reading post-translational modifications in histones. More recently, a new set of readers with the ability to interact with the nucleosome through concomitant binding to histones and DNA has emerged. In this review, we discuss mechanistic insights underlying bivalent histone and DNA recognition by newly characterized readers and highlight the importance of binding to DNA for their association with chromatin.


Subject(s)
Histones , Nucleosomes , Chromatin , DNA/genetics , Epigenesis, Genetic , Histones/metabolism , Protein Processing, Post-Translational
11.
STAR Protoc ; 2(2): 100479, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33982013

ABSTRACT

The core subunit of the MORF acetyltransferase complex BRPF1 contains a unique combination of zinc fingers, including a plant homeodomain (PHD) finger followed by a zinc knuckle and another PHD finger, which together form a PZP domain (BRPF1PZP). BRPF1PZP has been shown to bind to the nucleosome and make contacts with both histone H3 tail and DNA. Here, we describe biophysical and structural methods for characterization of the interactions between BRPF1PZP, H3 tail, DNA, and the intact nucleosome. For complete details on the use and execution of this protocol, please refer to Klein et al. (2020).


Subject(s)
Adaptor Proteins, Signal Transducing , DNA-Binding Proteins , Nucleosomes , Protein Domains/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Biophysical Phenomena , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electrophoretic Mobility Shift Assay , Fluorescence Polarization , Histones/chemistry , Histones/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Nucleosomes/chemistry , Nucleosomes/metabolism
12.
J Mol Cell Cardiol ; 153: 44-59, 2021 04.
Article in English | MEDLINE | ID: mdl-33359755

ABSTRACT

Direct reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-ß) inhibition efficiently promote reprogramming. However, the mechanisms by which TGF-ß blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-ß signaling regulates the interaction between GATA4 and JMJD3. TGF-ß activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) that is associated with congenital heart disease exhibits reduced binding to JMJD3 and impairs cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-ß pathway activation impairs cardiac gene programming, in part by interfering with GATA4-JMJD3 interactions.


Subject(s)
GATA4 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/cytology , Jumonji Domain-Containing Histone Demethylases/metabolism , Myocytes, Cardiac/cytology , Transforming Growth Factor beta/antagonists & inhibitors , Animals , DNA Methylation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , GATA4 Transcription Factor/genetics , Histones/chemistry , Humans , Induced Pluripotent Stem Cells/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism
13.
Nat Commun ; 11(1): 5466, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122719

ABSTRACT

Human Microrchidia 4 (MORC4) is associated with acute and chronic pancreatitis, inflammatory disorders and cancer but it remains largely uncharacterized. Here, we describe the structure-function relationship of MORC4 and define the molecular mechanism for MORC4 activation. Enzymatic and binding assays reveal that MORC4 has ATPase activity, which is dependent on DNA-binding functions of both the ATPase domain and CW domain of MORC4. The crystal structure of the ATPaseCW cassette of MORC4 and mutagenesis studies show that the DNA-binding site and the histone/ATPase binding site of CW are located on the opposite sides of the domain. The ATPase and CW domains cooperate in binding of MORC4 to the nucleosome core particle (NCP), enhancing the DNA wrapping around the histone core and impeding binding of DNA-associated proteins, such as transcription factors, to the NCP. In cells, MORC4 mediates formation of nuclear bodies in the nucleus and has a role in the progression of S-phase of the cell cycle, and both these functions require CW and catalytic activity of MORC4. Our findings highlight the mechanism for MORC4 activation, which is distinctly different from the mechanisms of action observed in other MORC family members.


Subject(s)
Adenosine Triphosphatases/metabolism , Nuclear Proteins , Binding Sites , Cell Cycle , Crystallography, X-Ray , DNA/metabolism , HEK293 Cells , Histones/metabolism , Humans , Intranuclear Inclusion Bodies/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Protein Binding , Protein Domains/physiology , S Phase Cell Cycle Checkpoints , Spectrometry, Fluorescence , Transcription Factors/metabolism , Zinc Finger Nucleases/chemistry , Zinc Finger Nucleases/metabolism
14.
Biochemistry ; 59(4): 389-399, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31746185

ABSTRACT

Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic ß cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.


Subject(s)
Histones/metabolism , Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , DNA-Binding Proteins/metabolism , Hep G2 Cells , Histone Code , Histones/genetics , Humans , Liver Neoplasms/metabolism , Lysine/metabolism , Methylation , Models, Molecular , PHD Zinc Fingers/physiology , Protein Binding , Transcription Factors/physiology
15.
Structure ; 28(1): 105-110.e3, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31711755

ABSTRACT

The assembly of human histone acetyltransferase MOZ/MORF complexes relies on the scaffolding bromodomain plant homeodomain (PHD) finger 1 (BRPF1) subunit. The PHD-zinc-knuckle-PHD module of BRPF1 (BRPF1PZP) has been shown to associate with the histone H3 tail and DNA; however, the molecular mechanism underlying recognition of H3 and the relationship between the histone and DNA-binding activities remain unclear. In this study, we report the crystal structure of BRPF1PZP bound to the H3 tail and characterize the role of the bipartite interaction in the engagement of BRPF1PZP with the nucleosome core particle (NCP). We find that although both interactions of BRPF1PZP with the H3 tail and DNA are required for tight binding to NCP and for acetyltransferase function of the BRPF1-MORF-ING5-MEAF6 complex, binding to extranucleosomal DNA dominates. Our findings suggest that functionally active BRPF1PZP might be important in stabilization of the MOZ/MORF complexes at chromatin with accessible DNA.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , Histones/metabolism , Humans , Protein Binding , Protein Domains
16.
Nat Commun ; 10(1): 4951, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666529

ABSTRACT

E2F1 and retinoblastoma (RB) tumor-suppressor protein not only regulate the periodic expression of genes important for cell proliferation, but also localize to DNA double-strand breaks (DSBs) to promote repair. E2F1 is acetylated in response to DNA damage but the role this plays in DNA repair is unknown. Here we demonstrate that E2F1 acetylation creates a binding motif for the bromodomains of the p300/KAT3B and CBP/KAT3A acetyltransferases and that this interaction is required for the recruitment of p300 and CBP to DSBs and the induction of histone acetylation at sites of damage. A knock-in mutation that blocks E2F1 acetylation abolishes the recruitment of p300 and CBP to DSBs and also the accumulation of other chromatin modifying activities and repair factors, including Tip60, BRG1 and NBS1, and renders mice hypersensitive to ionizing radiation (IR). These findings reveal an important role for E2F1 acetylation in orchestrating the remodeling of chromatin structure at DSBs to facilitate repair.


Subject(s)
CREB-Binding Protein/metabolism , DNA Breaks, Double-Stranded , E1A-Associated p300 Protein/metabolism , E2F1 Transcription Factor/metabolism , Histones/metabolism , Acetylation , Animals , Cell Cycle Proteins/metabolism , DNA Helicases/metabolism , DNA Repair/genetics , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/genetics , Gene Knock-In Techniques , Histone Acetyltransferases , Lysine Acetyltransferase 5/metabolism , Mice , Nuclear Proteins/metabolism , Protein Interaction Domains and Motifs , Radiation, Ionizing , Trans-Activators/metabolism , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism
17.
Nat Commun ; 10(1): 4724, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624313

ABSTRACT

Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Acetylation , Acylation , Binding Sites/genetics , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histones/chemistry , Humans , K562 Cells , Molecular Dynamics Simulation , Protein Binding , Protein Domains
18.
Nat Commun ; 10(1): 2314, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127101

ABSTRACT

Histone methyltransferase MLL4 is centrally involved in transcriptional regulation and is often mutated in human diseases, including cancer and developmental disorders. MLL4 contains a catalytic SET domain that mono-methylates histone H3K4 and seven PHD fingers of unclear function. Here, we identify the PHD6 finger of MLL4 (MLL4-PHD6) as a selective reader of the epigenetic modification H4K16ac. The solution NMR structure of MLL4-PHD6 in complex with a H4K16ac peptide along with binding and mutational analyses reveal unique mechanistic features underlying recognition of H4K16ac. Genomic studies show that one third of MLL4 chromatin binding sites overlap with H4K16ac-enriched regions in vivo and that MLL4 occupancy in a set of genomic targets depends on the acetyltransferase activity of MOF, a H4K16ac-specific acetyltransferase. The recognition of H4K16ac is conserved in the PHD7 finger of paralogous MLL3. Together, our findings reveal a previously uncharacterized acetyllysine reader and suggest that selective targeting of H4K16ac by MLL4 provides a direct functional link between MLL4, MOF and H4K16 acetylation.


Subject(s)
DNA-Binding Proteins/metabolism , Histone Acetyltransferases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , PHD Zinc Fingers/physiology , Acetylation , Animals , Binding Sites , Chromatin/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Gene Knockout Techniques , HEK293 Cells , Histone Acetyltransferases/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histones/chemistry , Humans , Mice, Transgenic , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Processing, Post-Translational/physiology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 116(13): 6111-6119, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850548

ABSTRACT

Microrchidia 3 (MORC3) is a human protein linked to autoimmune disorders, Down syndrome, and cancer. It is a member of a newly identified family of human ATPases with an uncharacterized mechanism of action. Here, we elucidate the molecular basis for inhibition and activation of MORC3. The crystal structure of the MORC3 region encompassing the ATPase and CW domains in complex with a nonhydrolyzable ATP analog demonstrates that the two domains are directly coupled. The extensive ATPase:CW interface stabilizes the protein fold but inhibits the catalytic activity of MORC3. Enzymatic, NMR, mutational, and biochemical analyses show that in the autoinhibited, off state, the CW domain sterically impedes binding of the ATPase domain to DNA, which in turn is required for the catalytic activity. MORC3 autoinhibition is released by disrupting the intramolecular ATPase:CW coupling through the competitive interaction of CW with histone H3 tail or by mutating the interfacial residues. Binding of CW to H3 leads to a marked rearrangement in the ATPase-CW cassette, which frees the DNA-binding site in active MORC3 (on state). We show that ATP-induced dimerization of the ATPase domain is strictly required for the catalytic activity and that the dimeric form of ATPase-CW might cooperatively bind to dsDNA. Together, our findings uncovered a mechanism underlying the fine-tuned regulation of the catalytic domain of MORC3 by the epigenetic reader, CW.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/isolation & purification , Catalysis , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/isolation & purification , Enzyme Activation , Fluorescence Polarization , Histones/metabolism , Humans , Magnetic Resonance Spectroscopy
20.
Nat Commun ; 9(1): 4574, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385749

ABSTRACT

The YEATS domain has been identified as a reader of histone acylation and more recently emerged as a promising anti-cancer therapeutic target. Here, we detail the structural mechanisms for π-π-π stacking involving the YEATS domains of yeast Taf14 and human AF9 and acylated histone H3 peptides and explore DNA-binding activities of these domains. Taf14-YEATS selects for crotonyllysine, forming π stacking with both the crotonyl amide and the alkene moiety, whereas AF9-YEATS exhibits comparable affinities to saturated and unsaturated acyllysines, engaging them through π stacking with the acyl amide. Importantly, AF9-YEATS is capable of binding to DNA, whereas Taf14-YEATS is not. Using a structure-guided approach, we engineered a mutant of Taf14-YEATS that engages crotonyllysine through the aromatic-aliphatic-aromatic π stacking and shows high selectivity for the crotonyl H3K9 modification. Our findings shed light on the molecular principles underlying recognition of acyllysine marks and reveal a previously unidentified DNA-binding activity of AF9-YEATS.


Subject(s)
DNA/metabolism , Histone Code , Nuclear Proteins/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factor TFIID/metabolism , Acetylation , Acylation , Crystallography, X-Ray , DNA/ultrastructure , Humans , Lysine/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/ultrastructure , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/genetics , Transcription Factor TFIID/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...