Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324296

ABSTRACT

PURPOSE: Antibody-drug conjugates (ADCs) have shown impressive clinical activity with approval of many agents in hematological and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic MMAE prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. EXPERIMENTAL DESIGN: Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo anti-tumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). RESULTS: The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared to a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of 8 and 4 respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAU DAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. CONCLUSIONS: The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in non-human primates, leading to a superior preclinical therapeutic window. The data supports potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.

2.
Pharmaceutics ; 13(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34683962

ABSTRACT

Autoimmune diseases such as rheumatoid arthritis are caused by immune system recognition of self-proteins and subsequent production of effector T cells that recognize and attack healthy tissue. Therapies for these diseases typically utilize broad immune suppression, which can be effective, but which also come with an elevated risk of susceptibility to infection and cancer. T cell recognition of antigens is driven by binding of T cell receptors to peptides displayed on major histocompatibility complex proteins (MHCs) on the cell surface of antigen-presenting cells. Technology for recombinant production of the extracellular domains of MHC proteins and loading with peptides to produce pMHCs has provided reagents for detection of T cell populations, and with the potential for therapeutic intervention. However, production of pMHCs in large quantities remains a challenge and a translational path needs to be established. Here, we demonstrate a fusion protein strategy enabling large-scale production of pMHCs. A peptide corresponding to amino acids 259-273 of collagen II was fused to the N-terminus of the MHC_II beta chain, and the alpha and beta chains were each fused to human IgG4 Fc domains and co-expressed. A tag was incorporated to enable site-specific conjugation. The cytotoxic drug payload, MMAF, was conjugated to the pMHC and potent, peptide-specific killing of T cells that recognize the collagen pMHC was demonstrated with tetramerized pMHC-MMAF conjugates. Finally, these pMHCs were incorporated into MMAF-loaded 3DNA nanomaterials in order to provide a biocompatible platform. Loading and pMHC density were optimized, and peptide-specific T cell killing was demonstrated. These experiments highlight the potential of a pMHC fusion protein-targeted, drug-loaded nanomaterial approach for selective delivery of therapeutics to disease-relevant T cells and new treatment options for autoimmune disease.

3.
Mol Ther ; 29(6): 2053-2066, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33601052

ABSTRACT

RNA interference (RNAi) offers the potential to treat disease at the earliest onset by selectively turning off the expression of target genes, such as intracellular oncogenes that drive cancer growth. However, the development of RNAi therapeutics as anti-cancer drugs has been limited by both a lack of efficient and target cell-specific delivery systems and the necessity to overcome numerous intracellular barriers, including serum/lysosomal instability, cell membrane impermeability, and limited endosomal escape. Here, we combine two technologies to achieve posttranscriptional gene silencing in tumor cells: Centyrins, alternative scaffold proteins binding plasma membrane receptors for targeted delivery, and small interfering RNAs (siRNAs), chemically modified for high metabolic stability and potency. An EGFR Centyrin known to internalize in EGFR-positive tumor cells was site-specifically conjugated to a beta-catenin (CTNNb1) siRNA and found to drive potent and specific target knockdown by free uptake in cell culture and in mice inoculated with A431 tumor xenografts (EGFR amplified). The generalizability of this approach was further demonstrated with Centyrins targeting multiple receptors (e.g., BCMA, PSMA, and EpCAM) and siRNAs targeting multiple genes (e.g., CD68, KLKb1, and SSB1). Moreover, by installing multiple conjugation handles, two different siRNAs were fused to a single Centyrin, and the conjugate was shown to simultaneously silence two different targets. Finally, by specifically pairing EpCAM-binding Centyrins that exhibited optimized internalization profiles, we present data showing that an EpCAM Centyrin CTNNb1 siRNA conjugate suppressed tumor cell growth of a colorectal cancer cell line containing an APC mutation but not cells with normal CTNNb1 signaling. Overall, these data demonstrate the potential of Centyrin-siRNA conjugates to target cancer cells and silence oncogenes, paving the way to a new class of anticancer drugs.


Subject(s)
Gene Transfer Techniques , RNA Interference , RNA, Small Interfering/genetics , Animals , Cell Line, Tumor , Gene Knockdown Techniques , Gene Silencing , Genes, erbB-1 , Genetic Therapy , Humans , Ligands , Mice , RNA, Messenger , RNA, Small Interfering/administration & dosage , Tenascin/genetics , Xenograft Model Antitumor Assays , beta Catenin/genetics
4.
Clin Biomech (Bristol, Avon) ; 64: 2-13, 2019 04.
Article in English | MEDLINE | ID: mdl-29933966

ABSTRACT

BACKGROUND: An increases in plasma membrane permeability is part of the acute pathology of traumatic brain injury and may be a function of excessive membrane force. This membrane damage, or mechanoporation, allows non-specific flux of ions and other molecules across the plasma membrane, and may ultimately lead to cell death. The relationships among tissue stress and strain, membrane permeability, and subsequent cell degeneration, however, are not fully understood. METHODS: Fluorescent molecules of different sizes were introduced to the cerebrospinal fluid space prior to injury and animals were sacrificed at either 10 min or 24 h after injury. We compared the spatial distribution of plasma membrane damage following controlled cortical impact in the rat to the stress and strain tissue patterns in a 3-D finite element simulation of the injury parameters. FINDINGS: Permeable cells were located primarily in the ipsilateral cortex and hippocampus of injured rats at 10 min post-injury; however by 24 h there was also a significant increase in the number of permeable cells. Analysis of colocalization of permeability marker uptake and Fluorojade staining revealed a subset of permeable cells with signs of degeneration at 24 h, but plasma membrane damage was evident in the vast majority of degenerating cells. The regional and subregional distribution patterns of the maximum principal strain and shear stress estimated by the finite element model were comparable to the cell membrane damage profiles following a compressive impact. INTERPRETATION: These results indicate that acute membrane permeability is prominent following traumatic brain injury in areas that experience high shear or tensile stress and strain due to differential mechanical properties of the cell and tissue organization, and that this mechanoporation may play a role in the initiation of secondary injury, contributing to cell death.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Cell Membrane Permeability , Neurons , Stress, Mechanical , Animals , Brain Injuries, Traumatic/metabolism , Cell Death , Cerebral Cortex/pathology , Disease Models, Animal , Finite Element Analysis , Hippocampus/pathology , Ions , Male , Rats , Rats, Sprague-Dawley
5.
Bioconjug Chem ; 28(11): 2865-2873, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28945346

ABSTRACT

Tumor-targeted near-infrared fluorescent dyes have the potential to improve cancer surgery by enabling surgeons to locate and resect more malignant lesions where good visualization tools are required to ensure complete removal of malignant tissue. Although the tumor-targeted fluorescent dyes used in humans to date have been either small organic molecules or high molecular weight antibodies, low molecular weight protein scaffolds have attracted significant attention because they penetrate solid tumors almost as efficiently as small molecules, but can be infinitely mutated to bind almost any antigen. Here we describe the use of a 10 kDa protein scaffold, a Centyrin, to target a near-infrared fluorescent dye to tumors that overexpress the epidermal growth factor receptor (EGFR) for fluorescence-guided surgery (FGS). We have developed and optimized the dose and time required for imaging small tumor burdens with minimal background fluorescence in real-time fluorescence-guided surgery of EGFR-expressing tumor xenografts in murine models. We demonstrate that the Centyrin-near-infrared dye conjugate (CNDC) binds selectively to human EGFR+ cancer cells with an EC50 of 2 nM, localizes to EGFR+ tumor xenografts in athymic nude mice and that uptake of the dye in xenografts is significantly reduced when EGFR are blocked by preinjection of excess unlabeled Centyrin. Taken together, these data suggest that CNDCs can be used for intraoperative identification and surgical removal of EGFR-expressing lesions and that Centyrins targeted to other tumor-specific antigens should prove similarly useful in fluorescence guided surgery of cancer. In addition, we demonstrate that the CNDC is detected in the NIR region of the spectrum and can be utilized for fluorescence-guided surgery (FGS). In addition, we propose that with its eventual complete clearance from EGFR-negative tissues and its quantitative retention in the tumor mass for >24 h, a Centyrin-targeted NIR dye should provide excellent tumor contrast when injected at least 6-8 h before initiation of cancer surgery in human patients.


Subject(s)
ErbB Receptors/analysis , Fluorescent Dyes/chemistry , Neoplasms/diagnostic imaging , Neoplasms/surgery , Optical Imaging/methods , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Humans , Infrared Rays , Mice , Mice, Nude , Models, Molecular , Neoplasms/metabolism , Proteins/chemistry , Proteins/metabolism
6.
Protein Eng Des Sel ; 29(12): 563-572, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27737926

ABSTRACT

Targeted delivery of therapeutic payloads to specific tissues and cell types is an important component of modern pharmaceutical development. Antibodies or other scaffold proteins can provide the cellular address for delivering a covalently linked therapeutic via specific binding to cell-surface receptors. Optimization of the conjugation site on the targeting protein, linker chemistry and intracellular trafficking pathways can all influence the efficiency of delivery and potency of the drug candidate. In this study, we describe a comprehensive engineering experiment for an EGFR binding Centyrin, a highly stable fibronectin type III (FN3) domain, wherein all possible single-cysteine replacements were evaluated for expression, purification, conjugation efficiency, retention of target binding, biophysical properties and delivery of a cytotoxic small molecule payload. Overall, 26 of the 94 positions were identified as ideal for cysteine modification, conjugation and drug delivery. Conjugation-tolerant positions were mapped onto a crystal structure of the Centyrin, providing a structural context for interpretation of the mutagenesis experiment and providing a foundation for a Centyrin-targeted delivery platform.


Subject(s)
Drug Carriers/chemistry , Fibronectins/chemistry , Protein Engineering , Amino Acid Sequence , Cell Line, Tumor , Crystallography, X-Ray , Drug Carriers/metabolism , Drug Carriers/pharmacology , ErbB Receptors/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Fibronectins/pharmacology , Humans , Maleimides/chemistry , Models, Molecular , Protein Conformation, beta-Strand , Protein Domains
7.
J Neurosci ; 34(12): 4200-13, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24647941

ABSTRACT

Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca(2+)]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca(2+)]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg(2+) block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury.


Subject(s)
Brain Injuries/metabolism , Nerve Net/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain Injuries/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Nerve Net/physiopathology , Phenotype , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics
8.
New Dir Youth Dev ; 2012(134): 77-84, 9-10, 2012.
Article in English | MEDLINE | ID: mdl-22826168

ABSTRACT

A confluence of social, economic, and demographic trends has left a generation of young Americans facing an uncertain future in the workforce. If we are to improve their prospects and prepare them for rewarding careers, disparate stakeholders-employers, educators, youth advocates, and others-must work in common purpose. This article suggests ways to build community partnerships, with a special focus on engaging private employers in the effort.


Subject(s)
Capacity Building , Child Development , Community-Institutional Relations , Social Support , Vocational Education/methods , Child , Humans , United States
9.
Neurochem Int ; 60(5): 506-16, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22366650

ABSTRACT

NMDA receptors are essential for neurotransmission and key mediators of synaptic signaling, but they can also trigger deleterious degenerative processes that lead to cell death. Growing evidence suggests that selective blockade of the heterogeneous subunits that comprise the NMDA receptor may enable better control of pharmacotherapies for treating neurological diseases and injuries. We investigated the relationship between NMDAR activation, MAPK signaling, and mitochondrial shape following an excitotoxic insult. NR2A- and NR2B-containing NMDARs differentially mediated acute changes in cytosolic calcium, alterations in mitochondrial morphology, and phosphorylation of the MAPKs ERK and JNK. Activation of NR2A-containing NMDARs was associated with JNK phosphorylation that was neuroprotective in neuronal cultures subjected to excitotoxicity. In contrast, activation of NR2B-containing NMDARs triggered calcium accumulation in mitochondria that was strongly associated with mitochondrial swelling and neuronal cell death. Indeed, while blockade of NR2B-containing receptors was neuroprotective, this protection was lost when NR2A-initiated JNK phosphorylation was inhibited. Given the modest selectivity of the NR2A inhibitor, NVP-AAM077, the results highlight the significance of the relative, rather than absolute, activation of these two NMDA subtypes in modulating cell death pathways. Therefore, the balance between concurrent activation of NR2B-containing and NR2A-containing NMDARs dictates neuronal fate following excitotoxicity.


Subject(s)
MAP Kinase Signaling System/physiology , Mitochondria/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Blotting, Western , Calcium/metabolism , Enzyme Activation , Female , Mitochondria/enzymology , Phosphorylation , Pregnancy , Rats , Rats, Sprague-Dawley
10.
J Biol Chem ; 287(6): 4348-59, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22179603

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg(2+) block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity.


Subject(s)
Brain Injuries/metabolism , Mechanotransduction, Cellular , Neurons/metabolism , Protein Kinase C/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain Injuries/genetics , Brain Injuries/pathology , HEK293 Cells , Humans , Neurons/pathology , Point Mutation , Protein Kinase C/genetics , Rats , Receptors, N-Methyl-D-Aspartate/genetics , Transfection
11.
J Pharmacol Exp Ther ; 328(3): 813-21, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19064719

ABSTRACT

Previous studies have shown that cathepsins control amyloid beta (Abeta) levels in chromaffin cells via a regulated secretory pathway. In the present study, this concept was extended to investigations in primary hippocampal neurons to test whether Abeta release was coregulated by cathepsins and electrical activity, proposed components of a regulated secretory pathway. Inhibition of cathepsin B (catB) activity with CA074Me or attenuation of catB expression through small interfering RNA produced decreases in Abeta release, similar to levels produced with suppression of beta-site APP-cleaving enzyme 1 (BACE1) expression. To test whether the catB-dependent release of Abeta was linked to ongoing electrical activity, neurons were treated with tetrodotoxin (TTX) and CA074Me. These comparisons demonstrated no additivity between decreases in Abeta release produced by TTX and CA074Me. In contrast, pharmacological inhibition of cathepsin L (catL) selectively elevated Abeta42 levels but not Abeta40 or total Abeta. Mechanistic studies measuring C-terminal fragments of amyloid precursor protein (APP) suggested that catL elevated alpha-secretase activity, thereby suppressing Abeta42 levels. The mechanism of catB-mediated regulation of Abeta release remains unclear but may involve elevation of beta-secretase. In summary, these studies provide evidence for a significant alternative pathway for APP processing that involves catB and activity-dependent release of Abeta in a regulated secretory pathway for primary neurons.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Cathepsin B/metabolism , Cathepsins/metabolism , Cysteine Endopeptidases/metabolism , Hippocampus/physiology , Neurons/physiology , Animals , Cathepsin B/genetics , Cathepsin L , Cathepsins/genetics , Cysteine Endopeptidases/genetics , Hippocampus/enzymology , Humans , Neurons/drug effects , RNA, Small Interfering/genetics , Synapses/drug effects , Synapses/physiology , Tetrodotoxin/pharmacology
12.
J Neurotrauma ; 25(10): 1207-16, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18986222

ABSTRACT

Traumatic brain injury (TBI) is one of the most disabling injuries in the population, with 1.5 million Americans new cases each year and 5.3 million Americans overall requiring long-term daily care as a result of their injuries. One critical aspect in developing effective treatments for TBI is determining if new, specific receptor populations emerge in the early phase after injury that can subsequently be targeted to reduce neuronal death after injury. One specific glutamate receptor subtype, the calcium-permeable AMPA receptor (CP-AMPAR), is becoming increasingly recognized for its role in physiological and pathophysiological processes. Although present in relatively low levels in the mature brain, recent studies show that CP-AMPARs can appear following ischemic brain injury or status epilepticus, and the mechanisms that regulate the appearance of these receptors include alterations in transcription, RNA editing, and receptor trafficking. In this report, we use an in vitro model of TBI to show a gradual appearance of CP-AMPARs four hours following injury to cortical neurons. Moreover, the appearance of these receptors is mediated by the phosphorylation of CaMKIIalpha following injury. Selectively blocking CP-AMPARs after mechanical injury leads to a significant reduction in the cell death that occurs 24 h following injury in untreated controls, and is similar in protection offered by broad-spectrum NMDA and AMPA receptor antagonists. These data point to a potentially new and more targeted therapeutic approach for treating TBI.


Subject(s)
Brain Injuries/metabolism , Calcium Signaling/physiology , Cerebral Cortex/metabolism , Nerve Degeneration/metabolism , Neurons/metabolism , Receptors, AMPA/metabolism , Animals , Brain Injuries/physiopathology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Death/drug effects , Cell Death/physiology , Cells, Cultured , Cerebral Cortex/physiopathology , Cytoprotection/drug effects , Cytoprotection/physiology , Cytosol/drug effects , Cytosol/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Nerve Degeneration/physiopathology , Neuroprotective Agents/pharmacology , Patch-Clamp Techniques , Protein Transport/genetics , RNA Editing/genetics , Rats , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/genetics , Stress, Mechanical , Time Factors , Up-Regulation/physiology
13.
Prog Brain Res ; 161: 27-39, 2007.
Article in English | MEDLINE | ID: mdl-17618968

ABSTRACT

Traumatic brain injury (TBI) represents one of most common disorders to the central nervous system (CNS). Despite significant efforts, though, an effective clinical treatment for TBI is not yet available. The complexity of human TBI is modeled with a broad group of experimental models, with each model matching some aspect of the human condition. In the past 15 years, these in vivo models were complemented with a group of in vitro models, with these in vitro models allowing investigators to more precisely identify the mechanism(s) of TBI, the different intracellular events that occur in acute period following injury, and the possible treatment of this injury in vitro. In this paper, we review the available in vitro models to study TBI, discuss their biomechanical basis for human TBI, and review the findings from these in vitro models. Finally, we synthesize the current knowledge and point out possible future directions for this group of models, especially in the effort toward developing new therapies for the traumatically brain injured patient.


Subject(s)
Trauma, Nervous System/metabolism , Trauma, Nervous System/pathology , Animals , Biomechanical Phenomena , Disease Models, Animal , Humans , In Vitro Techniques , Models, Biological
14.
J Neurochem ; 97(2): 462-74, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16539664

ABSTRACT

Increases in cytosolic calcium ([Ca(2+)](i)) following mechanical injury are often considered a major contributing factor to the cellular sequelae in traumatic brain injury (TBI). However, very little is known on how developmental changes may affect the calcium signaling in mechanically injured neurons. One key feature in the developing brain that may directly impact its sensitivity to stretch is the reduced inhibition which results in spontaneous [Ca(2+)](i) oscillations. In this study, we examined the mechanism of stretch-induced [Ca(2+)](i) transients in 18-days in vitro (DIV) neurons exhibiting bicuculline-induced [Ca(2+)](i) oscillations. We used an in vitro model of mechanical trauma to apply a defined uniaxial strain to cultured cortical neurons and used increases in [Ca(2+)](i) as a measure of the neuronal response to the stretch insult. We found that stretch-induced increases in [Ca(2+)](i) in 18-DIV neurons were inhibited by pretreatment with either the NMDA receptor antagonist, APV [D(-)-2-Amino-5-phosphonopentanoic acid], or by depolymerizing the actin cytoskeleton prior to stretch. Blocking synaptic NMDA receptors prior to stretch significantly attenuated most of the [Ca(2+)](i) transient. In comparison, cultures with pharmacologically induced [Ca(2+)](i) oscillations showed a substantially reduced [Ca(2+)](i) peak after stretch. We provide evidence showing that a contributing factor to this mechanical desensitization from induced [Ca(2+)](i) oscillations is the PKC-mediated uncoupling of NMDA receptors (NMDARs) from spectrin, an actin-associated protein, thereby rendering neurons insensitive to stretch. These results provide novel insights into how the [Ca(2+)](i) response to stretch is initiated, and how reduced inhibition - a feature of the developing brain - may affect the sensitivity of the immature brain to trauma.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Cytosol/drug effects , Neurons/cytology , 2-Amino-5-phosphonovalerate/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Actins/metabolism , Animals , Bicuculline/pharmacology , Brain/cytology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium Channel Blockers/pharmacology , Drug Combinations , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Fura-2/analogs & derivatives , Fura-2/pharmacokinetics , GABA Antagonists , Gene Expression Regulation/drug effects , N-Methylaspartate/pharmacology , Neurons/drug effects , Nimodipine/pharmacology , Pregnancy , Rats , Receptors, N-Methyl-D-Aspartate/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Thiazoles/pharmacology , Thiazolidines
15.
J Neurotrauma ; 23(2): 193-204, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16503803

ABSTRACT

The deformation to the brain that occurs during traumatic brain injury (TBI) results in a complex strain distribution throughout the brain tissue. Recently, many in vitro models of neuronal injury have been developed to simplify the mechanics which occur during TBI. We hypothesized that the type of mechanical insult imparted onto neurons would significantly alter both the mechanism and severity of the neuronal response to injury. In this study, primary cortical neurons were cultured on an elastic substrate and subjected to graded levels (0%, 10%, 30%, 50%) of either uniaxial (cells stretched in one direction only) or biaxial (cells simultaneously stretched in two directions) stretch. We found that neurons stretched in either injury paradigm exhibited immediate increases in intracellular free calcium ([Ca2+]i), but the magnitude of the ([Ca2+]i) rise was nearly an order of magnitude higher in biaxially stretched neurons compared to uniaxially stretched neurons. Moreover, while the ([Ca2+]i) transient after uniaxial stretch was blocked with specific channel antagonists (APV, CNQX, nimodipine, TTX), a substantial ([Ca2+]i) transient persisted in biaxially stretched neurons. We theorized that the additional calcium influx after biaxial stretch entered through nonspecific pores/tears formed in the membrane, since biaxially stretched neurons exhibited significant uptake of carboxyfluorescein, a molecule typically impermeant to cell membranes. Despite the large ([Ca2+]i) transients, neither injury profile resulted in death within 24 h of injury. Interestingly, though, uniaxially stretched neurons exhibited enhanced [Ca+2]i influx following NMDA stimulation 24 h after trauma, compared to both control and biaxially stretched neurons. These data point out that the type of mechanical insult will influence the acute mechanisms of injury in vitro, can cause differences in the response to potential secondary excitotoxic injury mechanisms, and emphasizes the need to further study how these mechanical conditions can separately affect cell fate following mechanical injury.


Subject(s)
Brain Injuries/metabolism , Brain Injuries/pathology , Calcium/metabolism , Neurons/pathology , Neurons/physiology , Animals , Cell Culture Techniques , Cell Survival , Disease Models, Animal , Excitatory Amino Acid Agonists/pharmacology , N-Methylaspartate/pharmacology , Neurons/drug effects , Permeability , Rats , Rats, Sprague-Dawley , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...