Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Psychiatry ; 27(1): 1-18, 2022 01.
Article in English | MEDLINE | ID: mdl-33972691

ABSTRACT

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-ß1 and Integrin-ß3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


Subject(s)
Cadherins , GABAergic Neurons , Parvalbumins , Cadherins/metabolism , GABAergic Neurons/metabolism , Humans , Induced Pluripotent Stem Cells , Integrins/metabolism , Parvalbumins/metabolism , Synapses/metabolism
2.
Autophagy ; 18(2): 423-442, 2022 02.
Article in English | MEDLINE | ID: mdl-34286667

ABSTRACT

Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.


Subject(s)
Autophagy , Intellectual Disability , Abnormalities, Multiple , Autophagosomes/metabolism , Autophagy/physiology , Chromosome Deletion , Chromosomes, Human, Pair 17 , Epigenesis, Genetic , Humans , Intellectual Disability/metabolism , Lysine/metabolism , Lysosomes/metabolism , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases/metabolism
3.
Stem Cell Reports ; 16(9): 2182-2196, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34329594

ABSTRACT

Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery.


Subject(s)
Cell Culture Techniques , Electrodes , Genetic Association Studies/methods , Lab-On-A-Chip Devices , Microarray Analysis/methods , Neurons/cytology , Neurons/metabolism , Action Potentials , Animals , Cell Differentiation , Cells, Cultured , Genetic Association Studies/instrumentation , Humans , Mice , Microarray Analysis/instrumentation , Nerve Net
4.
Stem Cell Reports ; 16(9): 2197-2212, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34329596

ABSTRACT

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/genetics , Chromans/pharmacology , Heteroplasmy/genetics , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , RNA, Transfer, Leu/genetics , Transcriptome , Animals , Astrocytes/metabolism , Cell Culture Techniques , Cells, Cultured , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/cytology , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/etiology , Mitochondrial Encephalomyopathies/metabolism , Neurons/cytology , Phenotype , Rats
5.
Cell Rep ; 31(3): 107538, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320658

ABSTRACT

Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.


Subject(s)
Mitochondria/metabolism , Neurons/metabolism , Animals , Cell Differentiation , Humans , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL