Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 4: 76-83, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240755

ABSTRACT

In recent years, it has become evident that olfaction is a fast sense, and millisecond short differences in stimulus onsets are used by animals to analyze their olfactory environment. In contrast, olfactory receptor neurons are thought to be relatively slow and temporally imprecise. These observations have led to a conundrum: how, then, can an animal resolve fast stimulus dynamics and smell with high temporal acuity? Using parallel recordings from olfactory receptor neurons in Drosophila, we found hitherto unknown fast and temporally precise odorant-evoked spike responses, with first spike latencies (relative to odorant arrival) down to 3 ms and with a SD below 1 ms. These data provide new upper bounds for the speed of olfactory processing and suggest that the insect olfactory system could use the precise spike timing for olfactory coding and computation, which can explain insects' rapid processing of temporal stimuli when encountering turbulent odor plumes.

2.
Arthropod Struct Dev ; 47(5): 482-497, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30120986

ABSTRACT

In many acoustic insects, mate finding and mate choice are primarily based on acoustic signals. In several species with high-intensity calling songs, such as the studied katydid Mecopoda sp., males exhibit an increase in their thoracic temperature during singing, which is linearly correlated with the amount of energy invested in song production. If this increased body temperature is used by females as an additional cue to assess the male's quality during mate choice, as has been recently hypothesized ("hot-male" hypothesis), thermosensory structures would be required to evaluate this cue. In the present study, therefore, we investigated the ultrastructure and physiology of thermosensitive sensilla coeloconica on the antennal flagella of Mecopoda sp. using a combination of electron microscopy and electrophysiological recording techniques. We could identify three distinct types of sensilla coeloconica based on differences in the number and branching pattern of their dendrites. Physiological recordings revealed the innervation by antagonistically responding thermoreceptors (cold and warm) and bimodal hygro-/thermoreceptors (moist or dry) in various combinations. Our findings indicate that Mecopoda sp. females are capable of detecting a singing male from distances of at least several centimetres solely by assessing thermal cues.


Subject(s)
Orthoptera/ultrastructure , Sensilla/physiology , Animals , Arthropod Antennae/physiology , Arthropod Antennae/ultrastructure , Dendrites/ultrastructure , Electrophysiology , Female , Humidity , Male , Microscopy, Electron, Transmission , Orthoptera/physiology , Sensilla/ultrastructure , Temperature , Thermoreceptors/physiology
3.
Front Behav Neurosci ; 9: 240, 2015.
Article in English | MEDLINE | ID: mdl-26388753

ABSTRACT

Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant's ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature.

4.
Arthropod Struct Dev ; 43(2): 175-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412654

ABSTRACT

Various microscopic techniques allow investigating structures from submicron to millimeter range, however, this is only possible if the structures of interest are not covered by pigmented cuticle. Here, we present a protocol that combines clearing of pigmented cuticle while preserving both, hard and soft tissues. The resulting transparent cuticle allows confocal laser-scanning microscopy (CLSM), which yields high-resolution images of e.g. the brain, glands, muscles and fine cuticular structures. Using a fluorescent dye, even single labeled neurons can be visualized and resolved up to an imaging depth of 150 µm through the cleared cuticle. Hydrogen-peroxide, which was used to clear the cuticle, does not preclude immunocytochemical techniques, shown by successful labeling of serotonin-immunoreactive neurons (5HT-ir) in the ants' brain. The 'transparent insect protocol' presented here is especially suited for small arthropods where dissection of organs is very demanding and difficult to achieve. Furthermore, the insect organs are preserved in situ thus allowing a more precise three-dimensional reconstruction of the structures of interest compared to, e.g., dissected or sectioned tissue.


Subject(s)
Ants/anatomy & histology , Microscopy, Confocal/methods , Animals , Body Size , Imaging, Three-Dimensional/methods
5.
PLoS One ; 8(11): e81518, 2013.
Article in English | MEDLINE | ID: mdl-24260580

ABSTRACT

Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors are correlated to distinct antennal lobe (AL) phenotypes. Two worker phenotypes differ in number of olfactory glomeruli in the AL and the presence or absence of an extremely large glomerulus (macroglomerulus), involved in trail-pheromone reception. The males' AL contains three macroglomeruli which are presumably involved in detection of sex-pheromone components. We investigated the antennal transcriptome data of all major castes (males, queens and workers) and two worker subcastes (large and tiny workers). In order to identify putative odorant receptor genes involved in pheromone detection, we identified differentially expressed odorant receptor genes (OR-genes) using custom microarrays. In total, we found 185 OR-gene fragments that are clearly related to ORs and we identified orthologs for 70 OR-genes. Among them one OR-gene differs in relative expression between the two worker subcastes by a factor of >3 and thus is a very promising candidate gene for the trail-pheromone receptor. Using the relative expression of OR-genes in males versus queens, we identified 2 candidates for sex-pheromone receptor genes in males. In addition, we identified genes from all other chemosensory related gene families (13 chemosensory protein genes, 8 odorant binding protein genes, 2 sensory-neuron membrane protein genes, 7 ionotropic receptor genes, 2 gustatory receptor genes), and we found ant-specific expansions in the chemosensory protein gene family. In addition, a large number of genes involved in immune defense exhibited differential expression across the three different castes, and some genes even between the two worker subcastes.


Subject(s)
Ants/genetics , Gene Expression , Insect Proteins/genetics , Pheromones/genetics , Phylogeny , Receptors, Odorant/genetics , Animals , Ants/anatomy & histology , Ants/classification , Ants/immunology , Arthropod Antennae/anatomy & histology , Arthropod Antennae/physiology , Body Size , Female , Gene Expression Profiling , Insect Proteins/classification , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Pheromones/classification , Plant Leaves , Receptors, Odorant/classification , Sex Characteristics
6.
J Neurosci ; 33(6): 2443-56, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23392673

ABSTRACT

In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.


Subject(s)
Arthropod Antennae/physiology , Bees/physiology , Odorants , Olfactory Pathways/physiology , Smell/physiology , Action Potentials/physiology , Animals , Bees/anatomy & histology , Female , Olfactory Pathways/anatomy & histology
7.
J Comp Neurol ; 521(12): 2742-55, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23359124

ABSTRACT

Sexually dimorphic sensory systems are common in Hymenoptera and are considered to result from sex-specific selection pressures. An extreme example of sensory dimorphism is found in the solitary bee tribe Eucerini. Males of long-horned bees bear antennae that exceed body length. This study investigated the pronounced sexual dimorphism of the peripheral olfactory system and its representation in higher brain centers of the species Eucera berlandi. Eucera males have elongated antennae, with 10 times more pore plates and three times more olfactory receptor neurons than females. The male antennal lobe (AL) comprises fewer glomeruli than the female AL (∼100 vs. ∼130), of which four are male-specific macroglomeruli. No sex differences were found in the relative volume of the mushroom bodies, a higher order neuropil essential for learning and memory in Hymenoptera. Compared with the Western honeybee, the degree of sexual dimorphism in Eucera is more pronounced at the periphery. In contrast, sex differences in glomerular numbers are higher in the eusocial honeybee and a sexual dimorphism of the relative investment in mushroom body tissue is observed only in Apis. The observed differences between the eusocial and the solitary bee species may reflect differences in male-specific behavioral traits and associated selection pressures, which are discussed in brief.


Subject(s)
Bees/anatomy & histology , Neurons/physiology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/physiology , Sex Characteristics , Adaptation, Physiological , Animals , Bees/classification , Female , Male , Neuropil/physiology , Species Specificity
8.
Arthropod Struct Dev ; 38(3): 195-205, 2009 May.
Article in English | MEDLINE | ID: mdl-19095080

ABSTRACT

Social insects show a variety of temperature-guided behaviors. Depending on whether heat reaches the sensillum via air movements (convective heat) or as radiant heat, specific adaptations of thermo-sensitive sensilla are expected. In the present study the morphology and the physiology of thermo-sensitive peg-in-pit sensilla (S. coeloconica) of the leaf-cutting ant Atta vollenweideri were investigated. S. coeloconica are located predominantly in a single cluster on the apical antennomere, and connect to the outside through a small aperture. The sensory peg is double-walled, embedded in a chamber and innervated by three unbranched dendrites. Using tungsten electrodes, activity of the sensory neurons was measured. In most cases, the neuron with the largest spike amplitude responds to changes in air temperature (convective heat) as well as to radiant heat. In response to a drop in air temperature, the neuron shows a phasic-tonic response followed by a complete adaptation within 1 min (cold-sensitive neuron). Based on their morphology and physiology, it is suggested that the S. coeloconica are involved in the recently described thermal orientation behavior of A. vollenweideri leaf-cutting ants.


Subject(s)
Ants/anatomy & histology , Neurons/physiology , Sensory Receptor Cells/ultrastructure , Animals , Ants/physiology , Behavior, Animal , Electrodes , Electrophysiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Anatomic , Social Behavior , Temperature , Time Factors , Tungsten
SELECTION OF CITATIONS
SEARCH DETAIL