Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell ; 83(5): 787-802.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36758546

ABSTRACT

Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.


Subject(s)
DNA Methylation , Enhancer Elements, Genetic , Animals , Chromatin , Transcription Factors/metabolism , Gene Expression Regulation , Mammals/metabolism
2.
Nat Protoc ; 16(12): 5673-5706, 2021 12.
Article in English | MEDLINE | ID: mdl-34773120

ABSTRACT

Precise control of gene expression requires the coordinated action of multiple factors at cis-regulatory elements. We recently developed single-molecule footprinting to simultaneously resolve the occupancy of multiple proteins including transcription factors, RNA polymerase II and nucleosomes on single DNA molecules genome-wide. The technique combines the use of cytosine methyltransferases to footprint the genome with bisulfite sequencing to resolve transcription factor binding patterns at cis-regulatory elements. DNA footprinting is performed by incubating permeabilized nuclei with recombinant methyltransferases. Upon DNA extraction, whole-genome or targeted bisulfite libraries are prepared and loaded on Illumina sequencers. The protocol can be completed in 4-5 d in any laboratory with access to high-throughput sequencing. Analysis can be performed in 2 d using a dedicated R package and requires access to a high-performance computing system. Our method can be used to analyze how transcription factors cooperate and antagonize to regulate transcription.


Subject(s)
DNA Footprinting/methods , DNA Modification Methylases/metabolism , DNA/metabolism , Genome , Single Molecule Imaging/methods , Transcription Factors/metabolism , Animals , Cell Nucleus/metabolism , DNA/genetics , DNA Modification Methylases/genetics , Gene Expression Regulation , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Sequence Analysis, DNA/statistics & numerical data , Software , Transcription Factors/genetics
3.
Mol Cell ; 81(2): 255-267.e6, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33290745

ABSTRACT

Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.


Subject(s)
DNA Footprinting/methods , DNA/genetics , Nucleosomes/chemistry , Regulatory Elements, Transcriptional , Transcription Factors/genetics , Animals , Binding Sites , DNA/chemistry , DNA/metabolism , Male , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/metabolism , Protein Binding , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription, Genetic
4.
Cell ; 176(5): 1054-1067.e12, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30773316

ABSTRACT

Vault RNAs (vtRNA) are small non-coding RNAs transcribed by RNA polymerase III found in many eukaryotes. Although they have been linked to drug resistance, apoptosis, and viral replication, their molecular functions remain unclear. Here, we show that vault RNAs directly bind the autophagy receptor sequestosome-1/p62 in human and murine cells. Overexpression of human vtRNA1-1 inhibits, while its antisense LNA-mediated knockdown enhances p62-dependent autophagy. Starvation of cells reduces the steady-state and p62-bound levels of vault RNA1-1 and induces autophagy. Mechanistically, p62 mutants that fail to bind vtRNAs display increased p62 homo-oligomerization and augmented interaction with autophagic effectors. Thus, vtRNA1-1 directly regulates selective autophagy by binding p62 and interference with oligomerization, a critical step of p62 function. Our data uncover a striking example of the potential of RNA to control protein functions directly, as previously recognized for protein-protein interactions and post-translational modifications.


Subject(s)
Autophagy/genetics , Vault Ribonucleoprotein Particles/genetics , Vault Ribonucleoprotein Particles/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , HeLa Cells , Humans , Mice , RAW 264.7 Cells , RNA/metabolism , RNA, Untranslated/metabolism , RNA, Untranslated/physiology , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL