Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 19(1): 55-63, 2023 01.
Article in English | MEDLINE | ID: mdl-36577875

ABSTRACT

Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.


Subject(s)
Nuclear Proteins , Transcription Factors , Nuclear Proteins/metabolism , Cryoelectron Microscopy , Transcription Factors/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
J Med Chem ; 65(21): 14721-14739, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36279149

ABSTRACT

Inappropriate activation of the NLRP3 inflammasome has been implicated in multiple inflammatory and autoimmune diseases. Herein, we aimed to develop novel NLRP3 inhibitors that could minimize the risk of drug-induced liver injury. Lipophilic ligand efficiency was used as a guiding metric to identify a series of 6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazinesulfonylureas. A leading compound from this series was advanced into safety studies in cynomolgus monkeys, and renal toxicity, due to compound precipitation, was observed. To overcome this obstacle, we focused on improving the solubility of our compounds, specifically by introducing basic amine substituents into the scaffold. This led to the identification of GDC-2394, a potent and selective NLRP3 inhibitor, with an in vitro and in vivo safety profile suitable for advancement into human clinical trials.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Oxazines , Animals , Humans , Oxazines/pharmacology , Oxazines/therapeutic use , Inflammasomes , Sulfonamides/pharmacology , Macaca fascicularis
3.
Bioorg Med Chem Lett ; 50: 128335, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34425201

ABSTRACT

Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness. This route of administration also limits the dose and target occupancy in patients. We envisioned a best-in-class molecule that would function with the same dual MOA as fulvestrant, but with improved physicochemical properties and would be orally bioavailable. Herein we report our progress toward that goal, resulting in a new lead GNE-502 which addressed some of the liabilities of our previously reported lead molecule GNE-149.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/drug therapy , Drug Discovery , Receptors, Estrogen/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Female , Humans , MCF-7 Cells , Mice , Molecular Structure , Protein Conformation , Xenograft Model Antitumor Assays
4.
J Med Chem ; 64(16): 11841-11856, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34251202

ABSTRACT

Breast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, 35 (GDC-9545 or giredestrant). 35 is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (1, 6, 7, and 9) across multiple cell lines. Fine-tuning the physiochemical properties enabled once daily oral dosing of 35 in preclinical species and humans. 35 exhibits low drug-drug interaction liability and demonstrates excellent in vitro and in vivo safety profiles. At low doses, 35 induces tumor regressions either as a single agent or in combination with a CDK4/6 inhibitor in an ESR1Y537S mutant PDX or a wild-type ERα tumor model. Currently, 35 is being evaluated in Phase III clinical trials.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Carbolines/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Estrogen Receptor alpha/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Carbolines/chemistry , Carbolines/pharmacokinetics , Dogs , Estrogen Receptor Antagonists/chemistry , Estrogen Receptor Antagonists/pharmacokinetics , Female , Humans , MCF-7 Cells , Macaca fascicularis , Mice , Molecular Structure , Rats , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
J Med Chem ; 64(5): 2534-2575, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596065

ABSTRACT

The biological and medicinal impacts of proteolysis-targeting chimeras (PROTACs) and related chimeric molecules that effect intracellular degradation of target proteins via ubiquitin ligase-mediated ubiquitination continue to grow. However, these chimeric entities are relatively large compounds that often possess molecular characteristics, which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. We therefore explored the conjugation of such molecules to monoclonal antibodies using technologies originally developed for cytotoxic payloads so as to provide alternate delivery options for these novel agents. In this report, we describe the first phase of our systematic development of antibody-drug conjugates (ADCs) derived from bromodomain-containing protein 4 (BRD4)-targeting chimeric degrader entities. We demonstrate the antigen-dependent delivery of the degrader payloads to PC3-S1 prostate cancer cells along with related impacts on MYC transcription and intracellular BRD4 levels. These experiments culminate with the identification of one degrader conjugate, which exhibits antigen-dependent antiproliferation effects in LNCaP prostate cancer cells.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Dipeptides/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Immunoconjugates/pharmacology , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Cell Cycle Proteins/metabolism , Cell Proliferation/drug effects , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Oxidoreductases/immunology , PC-3 Cells , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
6.
J Med Chem ; 64(5): 2576-2607, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596073

ABSTRACT

Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Cell Proliferation/drug effects , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Proteolysis/drug effects , Transcription Factors/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , Antigens, Neoplasm/immunology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Dipeptides/therapeutic use , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice, SCID , Oxidoreductases/immunology , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays
7.
ACS Med Chem Lett ; 11(6): 1342-1347, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551022

ABSTRACT

Estrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure. Through lead optimization, we discovered a tool molecule 12 (GNE-149) with improved degradation and antiproliferative activity in both MCF7 and T47D cells. To illustrate the binding mode and key interactions of this scaffold with ERα, we obtained a cocrystal structure of 6 that showed ionic interaction of azetidine with Asp351 residue. Importantly, 12 showed favorable metabolic stability and good oral exposure. 12 exhibited antagonist effect in the uterus and demonstrated robust dose-dependent efficacy in xenograft models.

8.
Bioorg Med Chem Lett ; 30(4): 126907, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31902710

ABSTRACT

Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.


Subject(s)
Antibodies, Monoclonal/immunology , Drug Carriers/chemistry , Estrogen Receptor alpha/immunology , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Drug Design , Estrogen Receptor alpha/metabolism , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacology , MCF-7 Cells , Proteolysis/drug effects , Receptor, ErbB-2/metabolism
9.
ChemMedChem ; 15(1): 17-25, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31674143

ABSTRACT

The ability to selectively degrade proteins with bifunctional small molecules has the potential to fundamentally alter therapy in a variety of diseases. However, the relatively large size of these chimeric molecules often results in challenging physico-chemical properties (e. g., low aqueous solubility) and poor pharmacokinetics which may complicate their in vivo applications. We recently discovered an exquisitely potent chimeric BET degrader (GNE-987) which exhibited picomolar cell potencies but also demonstrated low in vivo exposures. In an effort to improve the pharmacokinetic properties of this molecule, we discovered the first degrader-antibody conjugate by attaching GNE-987 to an anti-CLL1 antibody via a novel linker. A single IV dose of the conjugate afforded sustained in vivo exposures that resulted in antigen-specific tumor regressions. Enhancement of a chimeric protein degrader with poor in vivo properties through antibody conjugation thereby expands the utility of directed protein degradation as both a biological tool and a therapeutic possibility.


Subject(s)
Antibodies, Monoclonal/chemistry , Cell Cycle Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/chemistry , Immunoconjugates/chemistry , Transcription Factors/metabolism , Animals , Antibodies, Monoclonal/immunology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Female , Half-Life , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Protein Binding , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Mitogen/immunology , Surface Plasmon Resonance , Transcription Factors/antagonists & inhibitors , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 29(16): 2090-2093, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31311734

ABSTRACT

Phenolic groups are responsible for the high clearance and low oral bioavailability of the estrogen receptor alpha (ERα) clinical candidate GDC-0927. An exhaustive search for a backup molecule with improved pharmacokinetic (PK) properties identified several metabolically stable analogs, although in general at the expense of the desired potency and degradation efficiency. C-8 hydroxychromene 30 is the first example of a phenol-containing chromene that not only maintained excellent potency but also exhibited 10-fold higher oral exposure in rats. The improved in vivo clearance in rat was hypothesized to be the result of C-8 hydroxy group being sterically protected from glucuronide conjugation. The excellent potency underscores the possibility of replacing the presumed indispensable phenolic group at C-6 or C-7 of the chromene core. Co-crystal structures were obtained to highlight the change in key interactions and rationalize the retained potency.


Subject(s)
Azetidines/pharmacology , Estrogen Receptor alpha/metabolism , Flavonoids/pharmacology , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/metabolism , Azetidines/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Drug Stability , Flavonoids/administration & dosage , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Humans , MCF-7 Cells , Microsomes, Liver/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship
11.
Cell ; 178(4): 949-963.e18, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31353221

ABSTRACT

Estrogen receptor-positive (ER+) breast cancers frequently remain dependent on ER signaling even after acquiring resistance to endocrine agents, prompting the development of optimized ER antagonists. Fulvestrant is unique among approved ER therapeutics due to its capacity for full ER antagonism, thought to be achieved through ER degradation. The clinical potential of fulvestrant is limited by poor physicochemical features, spurring attempts to generate ER degraders with improved drug-like properties. We show that optimization of ER degradation does not guarantee full ER antagonism in breast cancer cells; ER "degraders" exhibit a spectrum of transcriptional activities and anti-proliferative potential. Mechanistically, we find that fulvestrant-like antagonists suppress ER transcriptional activity not by ER elimination, but by markedly slowing the intra-nuclear mobility of ER. Increased ER turnover occurs as a consequence of ER immobilization. These findings provide proof-of-concept that small molecule perturbation of transcription factor mobility may enable therapeutic targeting of this challenging target class.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor Antagonists/pharmacology , Fulvestrant/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cinnamates/pharmacology , Drug Resistance, Neoplasm , Estrogen Receptor Antagonists/therapeutic use , Female , Fulvestrant/therapeutic use , HEK293 Cells , Heterografts , Humans , Indazoles/pharmacology , Ligands , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Polymorphism, Single Nucleotide , Proteolysis/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects
12.
Bioorg Med Chem Lett ; 29(7): 905-911, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30732944

ABSTRACT

Despite tremendous progress made in the understanding of the ERα signaling pathway and the approval of many therapeutic agents, ER+ breast cancer continues to be a leading cause of cancer death in women. We set out to discover compounds with a dual mechanism of action in which they not only compete with estradiol for binding with ERα, but also can induce the degradation of the ERα protein itself. We were attracted to the constrained chromenes containing a tetracyclic benzopyranobenzoxepine scaffold, which were reported as potent selective estrogen receptor modulators (SERMs). Incorporation of a fluoromethyl azetidine side chain yielded highly potent and efficacious selective estrogen receptor degraders (SERDs), such as 16aa and surprisingly, also its enantiomeric pair 16ab. Co-crystal structures of the enantiomeric pair 16aa and 16ab in complex with ERα revealed default (mimics the A-D rings of endogenous ligand estradiol) and core-flipped binding modes, rationalizing the equivalent potency observed for these enantiomers in the ERα degradation and MCF-7 anti-proliferation assays.


Subject(s)
Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Estrogen Receptor alpha/chemistry , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Crystallization , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure , Protein Conformation , Signal Transduction , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 29(4): 674-680, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30522953

ABSTRACT

The discovery of disease-modifying therapies for Parkinson's Disease (PD) represents a critical need in neurodegenerative medicine. Genetic mutations in LRRK2 are risk factors for the development of PD, and some of these mutations have been linked to increased LRRK2 kinase activity and neuronal toxicity in cellular and animal models. As such, research towards brain-permeable kinase inhibitors of LRRK2 has received much attention. In the course of a program to identify structurally diverse inhibitors of LRRK2 kinase activity, a 5-azaindazole series was optimized for potency, metabolic stability and brain penetration. A key design element involved the incorporation of an intramolecular hydrogen bond to increase permeability and potency against LRRK2. This communication will outline the structure-activity relationships of this matched pair series including the challenge of obtaining a desirable balance between metabolic stability and brain penetration.


Subject(s)
Indazoles/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Drug Discovery , Hydrogen Bonding
14.
J Med Chem ; 60(24): 10056-10070, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29166018

ABSTRACT

USP7 is a deubiquitinase implicated in destabilizing the tumor suppressor p53, and for this reason it has gained increasing attention as a potential oncology target for small molecule inhibitors. Herein we describe the biophysical, biochemical, and computational approaches that led to the identification of 4-(2-aminopyridin-3-yl)phenol compounds described by Kategaya ( Nature 2017 , 550 , 534 - 538 ) as specific inhibitors of USP7. Fragment based lead discovery (FBLD) by NMR combined with virtual screening and re-mining of biochemical high-throughput screening (HTS) hits led to the discovery of a series of ligands that bind in the "palm" region of the catalytic domain of USP7 and inhibit its catalytic activity. These ligands were then optimized by structure-based design to yield cell-active molecules with reasonable physical properties. This discovery process not only involved multiple techniques working in concert but also illustrated a unique way in which hits from orthogonal screening approaches complemented each other for lead identification.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Aminopyridines/chemistry , Binding Sites , Catalytic Domain , Cell Line , Computer Simulation , Crystallography, X-Ray , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Humans , Magnetic Resonance Spectroscopy/methods , Oxadiazoles/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism
15.
Nature ; 550(7677): 534-538, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045385

ABSTRACT

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Subject(s)
Aminopyridines/chemistry , Aminopyridines/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Phenols/chemistry , Phenols/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin/metabolism , Animals , Binding, Competitive , Cell Line, Tumor , Drug Synergism , Female , Humans , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Substrate Specificity , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/metabolism
16.
J Med Chem ; 59(23): 10549-10563, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27682507

ABSTRACT

The single bromodomain of the closely related transcriptional regulators CBP/EP300 is a target of much recent interest in cancer and immune system regulation. A co-crystal structure of a ligand-efficient screening hit and the CBP bromodomain guided initial design targeting the LPF shelf, ZA loop, and acetylated lysine binding regions. Structure-activity relationship studies allowed us to identify a more potent analogue. Optimization of permeability and microsomal stability and subsequent improvement of mouse hepatocyte stability afforded 59 (GNE-272, TR-FRET IC50 = 0.02 µM, BRET IC50 = 0.41 µM, BRD4(1) IC50 = 13 µM) that retained the best balance of cell potency, selectivity, and in vivo PK. Compound 59 showed a marked antiproliferative effect in hematologic cancer cell lines and modulates MYC expression in vivo that corresponds with antitumor activity in an AML tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Pyridones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
17.
J Med Chem ; 57(3): 921-36, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24354345

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has drawn significant interest in the neuroscience research community because it is one of the most compelling targets for a potential disease-modifying Parkinson's disease therapy. Herein, we disclose structurally diverse small molecule inhibitors suitable for assessing the implications of sustained in vivo LRRK2 inhibition. Using previously reported aminopyrazole 2 as a lead molecule, we were able to engineer structural modifications in the solvent-exposed region of the ATP-binding site that significantly improve human hepatocyte stability, rat free brain exposure, and CYP inhibition and induction liabilities. Disciplined application of established optimal CNS design parameters culminated in the rapid identification of GNE-0877 (11) and GNE-9605 (20) as highly potent and selective LRRK2 inhibitors. The demonstrated metabolic stability, brain penetration across multiple species, and selectivity of these inhibitors support their use in preclinical efficacy and safety studies.


Subject(s)
Brain/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Cell Line , Hepatocytes/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Macaca fascicularis , Microsomes, Liver/metabolism , Molecular Docking Simulation , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship
18.
PLoS One ; 8(5): e63583, 2013.
Article in English | MEDLINE | ID: mdl-23691072

ABSTRACT

In order to efficiently characterize both antiproliferative potency and mechanism of action of small molecules targeting the cell cycle, we developed a high-throughput image-based assay to determine cell number and cell cycle phase distribution. Using this we profiled the effects of experimental and approved anti-cancer agents with a range mechanisms of action on a set of cell lines, comparing direct cell counting versus two metabolism-based cell viability/proliferation assay formats, ATP-dependent bioluminescence, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reduction, and a whole-well DNA-binding dye fluorescence assay. We show that, depending on compound mechanisms of action, the metabolism-based proxy assays are frequently prone to 1) significant underestimation of compound potency and efficacy, and 2) non-monotonic dose-response curves due to concentration-dependent phenotypic 'switching'. In particular, potency and efficacy of DNA synthesis-targeting agents such as gemcitabine and etoposide could be profoundly underestimated by ATP and MTS-reduction assays. In the same image-based assay we showed that drug-induced increases in ATP content were associated with increased cell size and proportionate increases in mitochondrial content and respiratory flux concomitant with cell cycle arrest. Therefore, differences in compound mechanism of action and cell line-specific responses can yield significantly misleading results when using ATP or tetrazolium-reduction assays as a proxy for cell number when screening compounds for antiproliferative activity or profiling panels of cell lines for drug sensitivity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Count/methods , Cell Cycle/drug effects , Cell Proliferation/drug effects , Drug Discovery/methods , High-Throughput Screening Assays/methods , Adenosine Triphosphate , Cell Cycle/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Luminescent Measurements , Tetrazolium Salts
19.
ACS Med Chem Lett ; 4(1): 85-90, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-24900567

ABSTRACT

The modulation of LRRK2 kinase activity by a selective small molecule inhibitor has been proposed as a potentially viable treatment for Parkinson's disease. By using aminopyrazoles as aniline bioisosteres, we discovered a novel series of LRRK2 inhibitors. Herein, we describe our optimization effort that resulted in the identification of a highly potent, brain-penetrant aminopyrazole LRRK2 inhibitor (18) that addressed the liabilities (e.g., poor solubility and metabolic soft spots) of our previously disclosed anilino-aminopyrimidine inhibitors. In in vivo rodent PKPD studies, 18 demonstrated good brain exposure and engendered significant reduction in brain pLRRK2 levels post-ip administration. The strategies of bioisosteric substitution of aminopyrazoles for anilines and attenuation of CYP1A2 inhibition described herein have potential applications to other drug discovery programs.

20.
Sci Transl Med ; 4(164): 164ra161, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23241745

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser(1292) occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser(1292) autophosphorylation. Mutation of Ser(1292) to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser(1292) as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser(1292) autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser(1292) autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.


Subject(s)
Mutation/genetics , Parkinson Disease/enzymology , Parkinson Disease/pathology , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Binding Sites , Brain/drug effects , Brain/enzymology , Brain/pathology , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Microtubules/drug effects , Microtubules/metabolism , Mutant Proteins/metabolism , Neurites/drug effects , Neurites/metabolism , Parkinson Disease/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Transport/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...