Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0251587, 2021.
Article in English | MEDLINE | ID: mdl-33984048

ABSTRACT

OBJECTIVES: During the COVID-19 pandemic, SARS-CoV-2 antibody testing has been suggested for (1) screening populations for disease prevalence, (2) diagnostics, and (3) guiding therapeutic applications. Here, we conducted a detailed clinical evaluation of four Anti-SARS-CoV-2 immunoassays in samples from acutely ill COVID-19 patients and in two negative cohorts. METHODS: 443 serum specimens from serial sampling of 29 COVID-19 patients were used to determine clinical sensitivities. Patients were stratified for the presence of acute respiratory distress syndrome (ARDS). Individual serum specimens from a pre-COVID-19 cohort of 238 healthy subjects and from a PCR-negative clinical cohort of 257 patients were used to determine clinical specificities. All samples were measured side-by-side with the Anti-SARS-CoV-2-ELISA (IgG), Anti-SARS-CoV-2-ELISA (IgA) and Anti-SARS-CoV-2-NCP-ELISA (IgG) (Euroimmun AG, Lübeck, Germany) and the Elecsys Anti-SARS-CoV-2 ECLIA (Roche Diagnostics International, Rotkreuz, Switzerland). RESULTS: Median seroconversion occurred earlier in ARDS patients (8-9 days) than in non-ARDS patients (11-17 days), except for EUR N-IgG. Rates of positivity and mean signal ratios in the ARDS group were significantly higher than in the non-ARDS group. Sensitivities between the four tested immunoassays were equivalent. In the set of negative samples, the specificity of the Anti-SARS-CoV-2-ELISA (IgA) was lower (93.9%) compared to all other assays (≥98.8%) and the specificity of Anti-SARS-CoV-2-NCP-ELISA (IgG) was lower (98.8%) than that of Elecsys Anti-SARS-CoV-2 (100%). CONCLUSIONS: Serial sampling in COVID-19 patients revealed earlier seroconversion and higher signal ratios of SARS-CoV-2 antibodies as a potential risk marker for the development of ARDS, suggesting a utility for antibody testing in acutely diseased patients.


Subject(s)
COVID-19/complications , COVID-19/immunology , Respiratory Distress Syndrome/etiology , SARS-CoV-2/immunology , Seroconversion , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19 Serological Testing , Female , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , SARS-CoV-2/isolation & purification
2.
J Control Release ; 333: 1-15, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33741385

ABSTRACT

Various thermosensitive liposome (TSL) formulations have been described to date and it is currently unclear which are optimal for solid tumor treatment. Sufficient circulation half-life is important and most liposomes obtain this by polyethylene glycol (PEG) surface modification. 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) has been described as a promising alternative which increases TSL circulation half-life and facilitates rapid drug release under mild hyperthermia at 20-30 mol%. The present work describes an investigation of the DPPG2-TSL protein corona, blood cell interactions, complement activation in human plasma/blood and hypersensitivity reactions in rats. Furthermore, accelerated blood clearance (ABC) was investigated to obtain a complete assessment of DPPG2-TSL interactions with components of the blood and identify drivers for circulation half-life. A higher mol% DPPG2 increased Apolipoprotein E (ApoE) adsorption and decreased complement activation and granulocyte interaction in vitro. In contrast to PEG-TSL, DPPG2-TSL showed no ABC effect. In vivo hypersensitivity assessment by eicosanoid measurements, platelet and lymphocyte counting resembled the results of in vitro complement activation assays although here all DPPG2-TSL formulations induced hypersensitive responses upon i.v. administration. Prolonged circulation half-life of DPPG2-TSL may be ApoE-induced and the absent ABC effect demonstrates an advantage over PEG-TSL. Low complement activation in human plasma and blood for 20-30 mol% DPPG2-TSL presents a unique formulation attribute with the potential to strengthen clinical evaluation.


Subject(s)
Hyperthermia, Induced , Liposomes , Animals , Doxorubicin , Half-Life , Polyethylene Glycols , Rats
3.
EMBO Mol Med ; 11(11): e10427, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31566909

ABSTRACT

Plasma and serum are rich sources of information regarding an individual's health state, and protein tests inform medical decision making. Despite major investments, few new biomarkers have reached the clinic. Mass spectrometry (MS)-based proteomics now allows highly specific and quantitative readout of the plasma proteome. Here, we employ Plasma Proteome Profiling to define quality marker panels to assess plasma samples and the likelihood that suggested biomarkers are instead artifacts related to sample handling and processing. We acquire deep reference proteomes of erythrocytes, platelets, plasma, and whole blood of 20 individuals (> 6,000 proteins), and compare serum and plasma proteomes. Based on spike-in experiments, we determine sample quality-associated proteins, many of which have been reported as biomarker candidates as revealed by a comprehensive literature survey. We provide sample preparation guidelines and an online resource ( www.plasmaproteomeprofiling.org) to assess overall sample-related bias in clinical studies and to prevent costly miss-assignment of biomarker candidates.


Subject(s)
Bias , Biomarkers/blood , Plasma/chemistry , Proteome/analysis , Proteomics/methods , Female , Germany , Healthy Volunteers , Humans , Male , Proteomics/standards , Specimen Handling/methods , Specimen Handling/standards
4.
Article in English | MEDLINE | ID: mdl-27100679

ABSTRACT

We used ferromagnetic particles as a novel technique to deproteinize plasma samples prior to quantitative UHPLC-MS/MS analysis of seven eicosanoids [thromboxane B2 (TXB2), prostaglandin E2 (PGE2), PGD2, 5-hydroxyeicosatetraenoic acid (5-HETE), 11-HETE, 12-HETE, arachidonic acid (AA)]. A combination of ferromagnetic particle enhanced deproteination and subsequent on-line solid phase extraction (on-line SPE) realized quick and convenient semi-automated sample preparation-in contrast to widely used manual SPE techniques which are rather laborious and therefore impede the investigation of AA metabolism in larger patient cohorts. Method evaluation was performed according to a protocol based on the EMA guideline for bioanalytical method validation, modified for endogenous compounds. Calibrators were prepared in ethanol. The calibration curves were found to be linear in a range of 0.1-80ngmL(-1) (TXB2, PGE2, PGD2), 0.05-40ngmL(-1) (5-HETE, 11-HETE), 0.5-400ngmL(-1) (12-HETE) and 25-9800ngmL(-1) (AA). Regarding all analytes and all quality controls, the resulting precision data (inter-assay 2.6 %-15.5 %; intra-assay 2.5 %-15.1 %, expressed as variation coefficient) as well as the accuracy results (inter-assay 93.3 %-125 %; intra-assay 91.7 %-114 %) were adequate. Further experiments addressing matrix effect, recovery and robustness, yielded also very satisfying results. As a proof of principle, the newly developed LC-MS/MS assay was employed to determine the capacity of AA metabolite release after whole blood stimulation in healthy blood donors. For this purpose, whole blood specimens of 5 healthy blood donors were analyzed at baseline and after a lipopolysaccharide (LPS) induced blood cell activation. In several baseline samples some eicosanoids levels were below the Lower Limit of Quantification. However, in the stimulated samples all chosen eicosanoids (except PGD2) could be quantified. These results, in context with those obtained in validation, demonstrate the applicability of ferromagnetic particles for the sample preparation for eicosanoids in human plasma. Thus, we conclude that ferromagnetic particle enhanced deproteination is a promising novel tool for sample preparation in LC-MS/MS, which is of particular interest for automation in clinical mass spectrometry, e.g. in order to further address eicosanoid analysis in larger patient cohorts.


Subject(s)
Chromatography, High Pressure Liquid/methods , Eicosanoids/blood , Magnetite Nanoparticles/chemistry , Tandem Mass Spectrometry/methods , Humans , Linear Models , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction
5.
Clin Chem Lab Med ; 52(5): 629-39, 2014 May.
Article in English | MEDLINE | ID: mdl-24327528

ABSTRACT

BACKGROUND: Liquid biobanking is an important tool for laboratory diagnostics in routine settings and clinical studies. However, the current knowledge about adequate storage conditions for different classes of biomarkers is incomplete and, in part, contradictory. Here, we performed a comprehensive study on the effects of different storage conditions on the stability of various biomarkers in human serum and plasma. METHODS: Serum and citrated plasma were aliquoted and stored at 4 °C, -20 °C, -80 °C, and <-130 °C for 0, 7, 30, and 90 days, respectively (5-10 pools/condition). Additionally, frozen aliquots were temporarily exposed to higher temperatures during storage to simulate removing individual samples. Stability was tested for 32 biomarkers from 10 different parameter classes (electrolytes, enzymes, metabolites, inert proteins, complement factors, ketone bodies, hormones, cytokines, coagulation factors, and sterols). RESULTS: Biobanking at -80 °C and <-130 °C for up to 90 days did not lead to substantial changes (defined as >3 interassay coefficients of variation and p<0.01) of any biomarker concentration. In contrast, storage at 4 °C and -20 °C induced substantial changes in single biomarker concentrations in most classes. Such substantial changes were increases (<20%) in electrolytes, metabolites, and proteins, and decreases (<96%) in enzymes, ketone bodies, cytokines, and coagulation factors. Biomarker stability was minimally affected by occasional short-term thermal exposure. CONCLUSIONS: Based on these results, we provide recommendations for storage conditions of up to 90 days for several biomarkers. Generally, storage at ≤-80 °C for at least 90 days including occasional short-term thermal exposure is an excellent storage condition for most biomarkers.


Subject(s)
Biomarkers/blood , Biological Specimen Banks , Humans , Immunoassay , Mass Spectrometry , Matrix Metalloproteinase 9/blood , Sterols/blood , Temperature , Time Factors , Tumor Necrosis Factor-alpha/blood
6.
Crit Care Med ; 40(5): 1478-86, 2012 May.
Article in English | MEDLINE | ID: mdl-22511130

ABSTRACT

OBJECTIVES: Sepsis-associated changes of the arachidonic acid metabolism and the utility of arachidonic acid metabolites for the diagnosis of sepsis have been poorly investigated so far. Therefore, the primary objective of our study was to screen for differentially regulated arachidonic acid metabolites in septic patients using a lipopolysaccharide whole-blood model and to investigate their diagnostic potential. DESIGN: Prospective, observational, single-center, clinical study. SETTING: Intensive care unit at University Hospital Leipzig. PATIENTS: Thirty-five patients (first cohort 25 patients, second cohort 10 patients) meeting the criteria for severe sepsis or septic shock were enrolled. Eighteen healthy volunteers (first cohort 15 subjects, second cohort 3 subjects) were enrolled as controls. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Arachidonic acid and its metabolites were investigated in supernatants of nonactivated (baseline) and lipopolysaccharide-activated heparinized whole blood of healthy subjects (n=15) and septic patients (n=25) by solid phase extraction and subsequent liquid chromatography-tandem mass spectrometry. Arachidonic acid, arachidonic acid analogues, and the cyclooxygenase-associated metabolites prostaglandin E2, 11-hydroxyeicosatetraenoic acid, and thromboxane B2 were identified as differentiating metabolites between septic patients and healthy subjects. Some of these compounds, including arachidonic acid, its analogues, and the cyclooxygenase metabolites prostaglandin E2 and thromboxane B2 differed at baseline. The inducibility of arachidonic acid and the cyclooxygenase metabolites 11-hydroxyeicosatetraenoic and prostaglandin E2 were reduced by 80% to 90% in septic patients. The degree of the inducibility was associated with severity of sepsis and clinical outcome. A reduced inducibility of COX-2 but preserved inducibility of mPGES-1 on gene expression level were confirmed in an independent cohort of septic patients (n=10) by quantitative reverse-transcription polymerase chain reaction compared to healthy controls (n=3). CONCLUSIONS: Arachidonic acid metabolism is markedly affected in patients with sepsis. Our data suggest that the analysis of arachidonic acid metabolites in an in vitro whole blood activation model may be a promising approach for risk estimation in septic patients that has to be further evaluated in subsequent large-scale clinical studies.


Subject(s)
Arachidonic Acid/metabolism , Sepsis/metabolism , Adult , Aged , Arachidonic Acid/blood , Chromatography, Liquid , Dinoprostone/blood , Female , Humans , Hydroxyeicosatetraenoic Acids/blood , Male , Middle Aged , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/blood , Sepsis/diagnosis , Shock, Septic/blood , Shock, Septic/diagnosis , Shock, Septic/metabolism , Tandem Mass Spectrometry , Thromboxane B2/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...