Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Annu Rev Biophys ; 40: 379-408, 2011.
Article in English | MEDLINE | ID: mdl-21545287

ABSTRACT

Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form water-soluble complexes with APols, and their biochemical stability is in general greatly improved compared with MPs in detergent solutions. The functionality and ligand-binding properties of APol-trapped MPs are reviewed, and the mechanisms by which APols stabilize MPs are discussed. Applications of APols include MP folding and cell-free synthesis, structural studies by NMR, electron microscopy and X-ray diffraction, APol-mediated immobilization of MPs onto solid supports, proteomics, delivery of MPs to preexisting membranes, and vaccine formulation.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Models, Chemical , Models, Molecular , Polymers/chemistry , Binding Sites , Computer Simulation , Protein Binding
2.
Biochemistry ; 47(32): 8414-23, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18642853

ABSTRACT

FomA, the major outer membrane protein of Fusobacterium nucleatum, was expressed and purified in Escherichia coli and reconstituted from detergent in bilayer membranes of phosphatidylcholines with chain lengths from C(12:0) to C(17:0). The conformation and orientation of membrane-incorporated FomA were determined from polarized, attenuated total reflection, infrared (IR) spectroscopy, and lipid-protein interactions with FomA were characterized by using electron paramagnetic resonance (EPR) spectroscopy of spin-labeled lipids. Approximately 190 residues of membranous FomA are estimated to be in a beta-sheet configuration from IR band fitting, which is consistent with a 14-strand transmembrane beta-barrel structure. IR dichroism of FomA indicates that the beta-strands are tilted by approximately 45 degrees relative to the sheet/barrel axis and that the order parameter of the latter displays a discontinuity corresponding to hydrophobic matching with fluid C(13:0) lipid chains. The stoichiometry ( N b = 23 lipids/monomer) of lipid-protein interaction from EPR demonstrates that FomA is not trimeric in membranes of diC(14:0) phosphatidylcholine and is consistent with a monomeric beta-barrel of 14-16 strands. The pronounced selectivity of interaction found with anionic spin-labeled lipids places basic residues of the protein in the vicinity of the polar-apolar membrane interfaces, consistent with current topology models. Comparison with similar data from the 8- to 22-stranded E. coli outer membrane proteins, OmpA, OmpG, and FhuA, supports the above conclusions.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Membrane Lipids/metabolism , Spin Labels , Bacterial Outer Membrane Proteins/analysis , Electron Spin Resonance Spectroscopy , Fusobacterium nucleatum/metabolism , Membrane Lipids/analysis , Protein Structure, Secondary , Spectrophotometry, Infrared , Structure-Activity Relationship
3.
Biochemistry ; 47(23): 6189-98, 2008 Jun 10.
Article in English | MEDLINE | ID: mdl-18473482

ABSTRACT

OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-position spin-labeled lipids by using EPR spectroscopy. The limited selectivity for different lipid species is consistent with the disposition of charged residues in the protein. The conformation and orientation (beta-strand tilt and beta-barrel order parameters) of OmpG in disaturated phosphatidylcholines of odd and even chain lengths from C(12:0) to C(17:0) was determined from polarized infrared spectroscopy of the amide I and amide II bands. A discontinuity in the protein orientation (deduced from the beta-barrel order parameters) is observed at the point of hydrophobic matching of the protein with lipid chain length. Compared with smaller (OmpA; n beta = 8) and larger (FhuA; n beta = 22) monomeric E. coli outer membrane proteins, the stoichiometry of motionally restricted lipids increases linearly with the number of beta-strands, the tilt (beta approximately 44 degrees ) of the beta-strands is comparable for the three proteins, and the order parameter of the beta-barrel increases regularly with n beta. These systematic features of the integration of monomeric beta-barrel proteins in lipid membranes could be useful for characterizing outer membrane proteins of unknown structure.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Liposomes/metabolism , Porins/chemistry , Porins/metabolism , Bacterial Outer Membrane Proteins/genetics , DNA Primers , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/genetics , Kinetics , Lecithins , Lipid Bilayers , Polymerase Chain Reaction , Porins/genetics , Spectrophotometry, Infrared , Thermodynamics
4.
Cell Mol Life Sci ; 60(8): 1547-58, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14513830

ABSTRACT

The biophysical principles and mechanisms by which membrane proteins insert and fold into a biomembrane have mostly been studied with bacteriorhodopsin and outer membrane protein A (OmpA). This review de-scribes the assembly process of the monomeric outer membrane proteins of Gram-negative bacteria, for which OmpA has served as an example. OmpA is a two-domain outer membrane protein composed of a 171-residue eight-stranded beta-barrel transmembrane domain and a 154-residue periplasmic domain. OmpA is translocated in an unstructured form across the cytoplasmic membrane into the periplasm. In the periplasm, unfolded OmpA is kept in solution in complex with the molecular chaperone Skp. After binding of periplasmic lipopolysaccharide, OmpA insertion and folding occur spontaneously upon interaction of the complex with the phospholipid bilayer. Insertion and folding of the beta-barrel transmembrane domain into the lipid bilayer are highly synchronized, i.e. the formation of large amounts of beta-sheet secondary structure and beta-barrel tertiary structure take place in parallel with the same rate constants, while OmpA inserts into the hydrophobic core of the membrane. In vitro, OmpA can successfully fold into a range of model membranes of very different phospholipid compositions, i. e. into bilayers of lipids of different headgroup structures and hydrophobic chain lengths. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers. Their formation was monitored by time-resolved distance determinations by fluorescence quenching, and they were structurally distinguished by the relative positions of the five tryptophan residues of OmpA in projection to the membrane normal. Recent studies indicate a chaperone-assisted, highly synchronized mechanism of secondary and tertiary structure formation upon membrane insertion of beta-barrel membrane proteins such as OmpA that involves at least three structurally distinct folding intermediates.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Folding , Protein Structure, Tertiary
5.
Mol Membr Biol ; 19(4): 247-55, 2002.
Article in English | MEDLINE | ID: mdl-12512771

ABSTRACT

Studies of lipid-protein interactions in double-reconstituted systems involving both integral and peripheral or lipid-anchored proteins are reviewed. Membranes of dimyristoyl phosphatidylglycerol containing either myelin proteolipid protein or cytochrome c oxidase were studied. The partner peripheral proteins bound to these membranes were myelin basic protein or cytochrome c, respectively. In addition, the interactions between the myelin proteolipid protein and avidin that was membrane-anchored by binding to N-biotinyl phosphatidylethanolamine were studied in dimyristoyl phosphatidylcholine membranes. Steric exclusion plays a significant role when sizes of the peripheral protein and transmembrane domain of the integral protein are comparable. Even so, the effects on avidin-linked lipids are different from those induced by myelin basic protein on freely diffusible lipids, both interacting with the myelin proteolipid protein. Both the former and the cytochrome c/cytochrome oxidase couple evidence a propagation of lipid perturbation out from the intramembrane protein interface that could be a basis for formation of microdomains.


Subject(s)
Lipid Metabolism , Membrane Proteins/metabolism , Animals , Avidin/metabolism , Biotin/metabolism , Cattle , Cytochrome c Group/metabolism , Electron Transport Complex IV/metabolism , Horses , Humans , Myelin Basic Protein/metabolism , Myelin Proteolipid Protein/metabolism , Protein Binding/physiology , Proteolipids/metabolism
7.
Biochemistry ; 39(9): 2355-61, 2000 Mar 07.
Article in English | MEDLINE | ID: mdl-10694403

ABSTRACT

The interaction of lipids, spin-labeled at different positions in the sn-2 chain, with cytochrome c oxidase reconstituted in gel-phase membranes of dimyristoylphosphatidylglycerol has been studied by electron paramagnetic resonance (EPR) spectroscopy. Nonlinear EPR methods, both saturation transfer EPR and progressive saturation EPR, were used. Interaction with the protein largely removes the flexibility gradient of the lipid chains in gel-phase membranes. The rotational mobility of the chain segments is reduced, relative to that for gel-phase lipids, by the intramembranous interaction with cytochrome c oxidase. This holds for all positions of chain labeling, but the relative effect is greater for chain segments closer to the terminal methyl ends. Modification of the paramagnetic metal-ion centers in the protein by binding azide has a pronounced effect on the spin-lattice relaxation of the lipid spin labels. This demonstrates that the centers modified are sufficiently close to the first-shell lipids to give appreciable dipolar interactions and that their vertical location in the membrane is closer to the 5-position than to the 14-position of the lipid chains.


Subject(s)
Electron Transport Complex IV/chemistry , Membrane Lipids/chemistry , Phosphatidylglycerols/chemistry , Spin Labels , Animals , Anisotropy , Azides/chemistry , Binding Sites , Cattle , Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , Heme/chemistry
8.
Protein Sci ; 8(10): 2065-71, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10548052

ABSTRACT

Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli/chemistry , Protein Folding , Circular Dichroism , Detergents , Micelles , Protein Structure, Secondary , Spectrophotometry, Ultraviolet
9.
Biochemistry ; 38(16): 4996-5005, 1999 Apr 20.
Article in English | MEDLINE | ID: mdl-10213602

ABSTRACT

The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Protein Folding , Tryptophan/chemistry , Acrylamide/chemistry , Bacterial Outer Membrane Proteins/metabolism , Biological Transport , Escherichia coli , Fluorescence Polarization , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Normal Distribution , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/statistics & numerical data , Temperature , Time Factors , Tryptophan/metabolism
10.
Biochemistry ; 38(16): 5006-16, 1999 Apr 20.
Article in English | MEDLINE | ID: mdl-10213603

ABSTRACT

Unfolded outer membrane protein A (OmpA) of Escherichia coli spontaneously inserts and refolds into lipid bilayers upon dilution of denaturing urea. In the accompanying paper, we have developed a new technique, time-resolved distance determination by fluorescence quenching (TDFQ), which is capable of monitoring the translocation across lipid bilayers of fluorescence reporter groups such as tryptophan in real time [Kleinschmidt, J. H., and Tamm, L. K. (1999) Biochemistry 38, 4996-5005]. Specifically, we have shown that wild-type OmpA, which contains five tryptophans, inserts into lipid bilayers via three structurally distinct membrane-bound folding intermediates. To take full advantage of the TDFQ technique and to further dissect the folding pathway, we have made five different mutants of OmpA, each containing a single tryptophan and four phenylalanines in the five tryptophan positions of the wild-type protein. All mutants refolded in vivo and in vitro and, as judged by SDS-PAGE, trypsin fragmentation, and Trp fluorescence, their refolded state was indistinguishable from the native state of OmpA. TDFQ analysis of the translocation across the lipid bilayer of the individual Trps of OmpA yielded the following results: Below 30 degrees C, all Trps started from a far distance from the bilayer center and then gradually approached a distance of approximately 10 A from the bilayer center. In a narrow temperature range between 30 and 35 degrees C, Trp-15, Trp-57, Trp-102, and Trp-143 were detected very close to the center of the lipid bilayer in the first few minutes and then moved to greater distances from the center. When monitored at 40 degrees C, which resolved the last steps of OmpA refolding, these four tryptophans crossed the center of the bilayer and approached distances of approximately 10 A from the center after refolding was complete. In contrast Trp-7 approached the 10 A distance from a far distance at all temperatures and was never detected to cross the center of the lipid bilayer. The translocation rates of Trp-15, Trp-57, Trp-102, and Trp-143 which are each located in different outer loop regions of the four beta-hairpins of the eight-stranded beta-barrel of OmpA were very similar to one another. This result and the common distances of these Trps from the membrane center observed in the third membrane-bound folding intermediate provide strong evidence for a synchronous translocation of all four beta-hairpins of OmpA across the lipid bilayer and suggest that OmpA inserts and folds into lipid bilayers by a concerted mechanism.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli/chemistry , Lipid Bilayers/chemistry , Protein Folding , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Biological Transport/genetics , Escherichia coli/genetics , Escherichia coli/virology , Fluorescence Polarization , Lipid Bilayers/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Spectrometry, Fluorescence , T-Phages/genetics , T-Phages/metabolism , Temperature , Time Factors , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
11.
Biochemistry ; 37(33): 11579-85, 1998 Aug 18.
Article in English | MEDLINE | ID: mdl-9708994

ABSTRACT

Cytochrome c oxidase isolated from beef heart mitochondria was reconstituted in bilayer membranes of the anionic lipid dimyristoylphosphatidylglycerol (DMPG) with varying enzyme/DMPG ratio. Lipid-protein interactions in the reconstituted membrane complexes were studied in the presence and absence of saturating amounts of bound cytochrome c, by both chemical binding assays and spin-label ESR spectroscopy. The ESR spectra from a phosphatidylglycerol probe spin-labeled on C-14 of the sn-2 chain revealed two distinct lipid populations differing in their rotational mobility. The stoichiometry of lipids that were restricted in their rotational motion by direct interaction with the integral protein was 50-60 lipids/cytochrome c oxidase monomer, in the absence of cytochrome c, independent of the total lipid/protein ratio. Cytochrome c alone did not induce a motionally restricted population in the lipid ESR spectra, when bound to bilayers of negatively charged DMPG alone, in the fluid phase (at 36 degreesC). However, the motionally restricted lipid population associated with reconstituted cytochrome c oxidase/DMPG membranes increased on binding cytochrome c, indicating structural/dynamic changes taking place in the membrane. Depending on the DMPG/cytochrome c oxidase ratio, apparent stoichiometries of up to 115 motionally restricted lipid molecules/cytochrome c oxidase monomer were found, when saturating amounts of cytochrome c were bound. Under these conditions, cytochrome c binds to approximately 9 negatively charged DMPG molecules, independent of the cytochrome c oxidase content in the reconstituted system. A likely explanation for these results is that the surface binding of cytochrome c propagates the motional restriction of the lipid chains beyond the first boundary shell of cytochrome c oxidase, possibly creating microscopic in-plane domains.


Subject(s)
Cytochrome c Group/chemistry , Electron Transport Complex IV/chemistry , Lipid Bilayers/chemistry , Animals , Binding Sites , Cattle , Cytochrome c Group/metabolism , Electron Spin Resonance Spectroscopy , Electron Transport Complex IV/metabolism , Horses , Lipid Bilayers/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Spin Labels
12.
Biophys J ; 73(5): 2546-55, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9370448

ABSTRACT

The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.


Subject(s)
Lipid Bilayers/metabolism , Oligopeptides/metabolism , Phospholipids/metabolism , Polylysine/metabolism , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Oligopeptides/chemistry , Phosphatidylglycerols/metabolism , Phospholipids/chemistry , Polylysine/chemistry , Spin Labels/chemical synthesis , Static Electricity , Stearic Acids/metabolism , Surface Properties , Temperature , Thermodynamics , Unithiol/metabolism
13.
Biophys J ; 72(2 Pt 1): 767-78, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9017202

ABSTRACT

Electron spin resonance (ESR) spectroscopy was used to study the penetration and interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) and ditetradecylphosphatidylglycerol (DTPG) bilayer membranes. Melittin is a surface-active, amphipathic peptide and serves as a useful model for a variety of membrane interactions, including those of presequences and signal peptides, as well as the charged subdomain of the cardiac regulatory protein phospholamban. Derivatives of phosphatidylcholine and phosphatidylglycerol spin-labeled at various positions along the sn-2 acyl chain were used to establish the chain flexibility gradient for the two membranes in the presence and absence of melittin. Negatively charged DTPG bilayer membranes showed a higher capacity for binding melittin without bilayer disruption than did membranes formed by the zwitterionic DMPC, demonstrating the electrostatic neutralization of bound melittin by DTPG. The temperature dependence of the ESR spectra showed that the gel-to-liquid crystalline phase transition is eliminated by binding melittin to DTPG bilayers, whereas a very broad transition remains in the case of DMPC bilayers. None of the spin labels used showed a two-component spectrum characteristic of a specific restriction of their chain motion by melittin, but the outer hyperfine splittings and effective chain order parameters were increased for all labels upon binding melittin. This indicates a reduced flexibility of the lipid chains induced by a surface orientation of the bound melittin. Whereas the characteristic shape of the chain flexibility gradient was maintained upon melittin addition to DMPC bilayers, the chain flexibility profile in DTPG bilayers was much more strongly perturbed. It was found that the steepest change in segmental flexibility was shifted toward the bilayer interior when melittin was bound to DTPG membranes, indicating a greater depth of penetration than in DMPC membranes. pH titration of stearic acid labeled at the C-5 position, used as a probe of interfacial interactions, showed net downward shifts in interfacial pK of 0.8 and 1.2 pH units contributed from the positive charge of melittin, outweighing upward shifts from interfacial dehydration, when melittin was bound to DTPG and DMPC, respectively. The perturbation of the outer hyperfine splitting was used to determine the interactions of melittin with spin-labeled lipids of different polar headgroups in DTPG and DMPC. Anionic lipids (phosphatidylserine, phosphatidylglycerol, and stearic acid) and zwitterionic lipids (phosphatidylethanolamine and phosphatidylcholine) had the largest outer splittings in the presence of melittin. Neutral lipids (protonated stearic acid and diacylglycerol) displayed the largest increase in outer splitting on binding melittin, which was attributed to a change in the vertical location of these lipids in the bilayer. Both effects were more pronounced in DTPG than in DMPC.


Subject(s)
Lipid Bilayers/metabolism , Melitten/metabolism , Phospholipids/metabolism , Amino Acid Sequence , Bee Venoms/chemistry , Dimyristoylphosphatidylcholine/metabolism , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Melitten/pharmacology , Molecular Sequence Data , Nitrogen Oxides/metabolism , Phosphatidylglycerols/metabolism , Spin Labels , Stearic Acids/metabolism , Temperature
14.
Biochemistry ; 35(40): 12993-3000, 1996 Oct 08.
Article in English | MEDLINE | ID: mdl-8855933

ABSTRACT

The mechanism of folding and membrane insertion of integral membrane proteins, including helix bundle and beta-barrel proteins is not well understood. A key question is whether folding and insertion are coupled or separable processes. We have used the beta-barrel outer membrane protein A (OmpA) of Escherichia coli as a model to study the kinetics of folding and insertion into dioleoylphosphatidylcholine (DOPC) bilayers, as a function of temperature by gel electrophoresis, protease digestion, and fluorescence spectroscopy. OmpA was unfolded in 8 M urea solution (without detergent), and refolding and membrane insertion was initiated by rapid dilution of the urea concentration in the presence of phospholipid vesicles. In addition to the kinetically unresolved hydrophobic collapse in water, the time course of refolding of OmpA into DOPC bilayers exhibited three kinetic phases over a large temperature range. The first step was fast (k1 = 0.16 min-1) and not very dependent on temperature. The second step was up to two orders of magnitude slower at low temperatures (2 degrees C), but approached the rate of the first step at higher temperatures (40 degrees C). The activation energy for this process was 46 +/- 4 kJ/mol. A third slow process (k3 = 0.9 x 10(-2) min-1 at 40 degrees C) was observed at the higher temperatures. These results suggest that at least two membrane-bound intermediates exist when OmpA folds and inserts into lipid bilayers. We also show that both membrane-bound intermediates can be stabilized in fluid lipid bilayers at low temperatures. These intermediates share many properties with the adsorbed/partially inserted form of OmpA that was previously characterized in gel phase lipid bilayers [Rodionova et al. (1995) Biochemistry 34, 1921-1929]. Temperature jump experiments demonstrate, that the low-temperature intermediates can be rapidly converted to fully inserted native OmpA. On the basis of these and previous results, we present a simple folding model for beta-barrel membrane proteins, in which folding and membrane insertion are coupled processes which involve at least four kinetically distinguishable steps.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Lipid Bilayers/metabolism , Protein Folding , Bacterial Outer Membrane Proteins/metabolism , Dimyristoylphosphatidylcholine/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/chemistry , Kinetics , Models, Molecular , Molecular Weight , Phosphatidylcholines/metabolism , Protein Conformation , Protein Structure, Secondary , Spectrometry, Fluorescence , Temperature , Tryptophan
SELECTION OF CITATIONS
SEARCH DETAIL
...