Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
J Virol Methods ; 329: 115009, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142521

ABSTRACT

Bovine ephemeral fever virus (BEFV) is a member of the genus Ephemerovirus in the family Rhabdoviridae. It is an arthropod-borne virus transmitted by many species of midges and mosquitoes. It can cause severe economic consequences due to losses in milk production and the general condition of cattle and water buffalo. BEF occurs in some tropical, subtropical and warm temperate regions of Africa, Australia, the Middle East and Asia with seasonal outbreaks, but its possible spread to other areas (e.g. Europe) cannot be excluded. Therefore, using and developing rapid diagnostic methods with optimal performance is essential for identifying emerging pathogens and their control. In the present study, we developed two competitive serological ELISAs based on monoclonal antibodies (mAbs), designed by using BEFV inactivated antigen and the BEF recombinant nucleoprotein (N), respectively. A panel of 77 BEF-positive and 338 BEF-negative sera was used to evaluate the two tests. With a diagnostic sensitivity of 97.4 % using the inactivated virus and 98.7 % using the recombinant N, and a diagnostic specificity of 100 % using both antigens, our results suggest that these tests are suitable for the serological diagnosis of BEF.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Antigens, Viral , Enzyme-Linked Immunosorbent Assay , Ephemeral Fever Virus, Bovine , Ephemeral Fever , Sensitivity and Specificity , Animals , Ephemeral Fever Virus, Bovine/immunology , Ephemeral Fever Virus, Bovine/isolation & purification , Cattle , Ephemeral Fever/diagnosis , Ephemeral Fever/virology , Ephemeral Fever/immunology , Antibodies, Viral/blood , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Antigens, Viral/immunology , Serologic Tests/methods , Nucleoproteins/immunology
2.
Pathogens ; 13(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39204237

ABSTRACT

Bovine ephemeral fever (BEF) is an arthropod-borne viral disease, which frequently causes significant epizootics in susceptible water buffalo and cattle in Africa, Australia, Asia and the Middle East. In the current study, a two-stage protocol for BEFV viral isolation was developed. Data on the clinical signs, geographic distribution and phylogenetic analysis of BEFV strains isolated in Israel in 2015, 2018, 2021 and 2023 were summarized. It was found that during 2015-2021, all BEF outbreaks were caused by local BEFV strains, whereas the epizootic of BEFV in 2023 was caused by a new "Mayotte-like" BEFV strain. A comparison of bluetongue (BT) and BEF outbreaks during 2023 in Israel demonstrated that the incidence of BEFV was 2.21 times higher and its pathogenicity was more serious for the cattle population compared to that caused by BTVs. A phylogenetic analysis of Israeli and global BEFV revealed the emergence of non-local strains in new areas. This finding suggests that BEFV can no longer be classified based only upon geographic distribution. Considering a phylogenetic, genetic and proteomic analysis of all available BEFV strains, we suggest classifying them as a single serotype, which includes four lineages.

3.
Prev Vet Med ; 230: 106262, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38991428

ABSTRACT

Ensuring effective vaccination is crucial for epidemic control, particularly in voluntary vaccination scenarios. Though highly important for planning voluntary vaccination programs, we lack insights into the effectiveness of veterinarian communication and the impact of disease-specific traits on farmer vaccination intentions. To fill this void, our study compared five diseases affecting Israeli dairy cattle (Botulism, Bovine Ephemeral Fever (BEF), Brucellosis, Lumpy Skin Disease (LSD), and Rabies). Using questionnaires grounded in the theory of planned behavior, we surveyed 340 Israeli dairy farmers to understand their vaccination intentions for each disease.Simultaneously, veterinarians overseeing these farms provided insights into their opinions and perceived influence on vaccination decisions. Results revealed varying levels of farmer vaccination intention, with Botulism showing the highest and BEF the lowest. Social pressure significantly influenced farmers' vaccination intentions, with distinct patterns across diseases. Veterinarian opinions had the highest influence only for LSD, while other factors played crucial roles in different diseases. Intriguingly, there was no correlation between veterinarians' recommendations and farmers' perceptions of these recommendations. In conclusion, the optimization of voluntary vaccination programs necessitates tailoring interventions to the unique characteristics of each disease. Additionally, improving communication between veterinarians and farmers is essential, with an emphasis on effective risk communication training.


Subject(s)
Cattle Diseases , Dairying , Farmers , Vaccination , Veterinarians , Animals , Cattle , Veterinarians/psychology , Vaccination/veterinary , Vaccination/psychology , Cattle Diseases/prevention & control , Farmers/psychology , Humans , Israel , Female , Surveys and Questionnaires , Health Knowledge, Attitudes, Practice , Intention
4.
Virology ; 590: 109950, 2024 02.
Article in English | MEDLINE | ID: mdl-38104361

ABSTRACT

Despite routine vaccination, Israel experiences recurrent outbreaks of foot and mouth disease (FMD). We analyzed VP1 coding sequences of viruses isolated during FMD outbreaks from 2001 to 2011 in Israel and neighboring nations. The Israeli strains were aligned with strains from neighboring countries in corresponding years, implying repeated FMD virus incursions. In 2007 a large FMD epidemic, caused by a serotype O virus, occurred in Israel. Bayesian analysis of whole-genome sequences of viruses isolated during this epidemic revealed predominant transmission among extensively farmed beef-cattle and small ruminants. Small ruminants were key in spreading to beef-cattle, which then transmitted the virus to feedlot-cattle. Wild gazelles had a minor role in transmission. The results may suggest probable transmission of FMD virus from the Palestinian Authority to Israel. Targeting extensive farms via enhanced surveillance and vaccination could improve FMDV control. Given cross-border transmission, a collaborative FMD mitigation strategy across the Middle-East is crucial.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Sheep , Foot-and-Mouth Disease Virus/genetics , Israel/epidemiology , Bayes Theorem , Phylogeny , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Serogroup , Disease Outbreaks/veterinary , Cattle Diseases/epidemiology , Sequence Analysis , Ruminants
5.
Arch Virol ; 168(9): 234, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608200

ABSTRACT

A novel ephemerovirus was identified in a Holstein-Friesian cow in the Hefer Valley, Israel, that showed severe and fatal clinical signs resembling an arboviral infection. A sample taken during the acute phase tested negative for important endemic arboviral infectious cattle diseases. However, sequencing from blood revealed the full genome sequence of Hefer Valley virus, which is likely to represent a new species within the genus Ephemerovirus, family Rhabdoviridae. Archived samples from cattle with comparable clinical signs collected in Israel in 2021 and 2022 tested negative for the novel virus, and therefore, the actual distribution of the virus is unknown. As this is a recently identified new viral infection, the viral vector and the prevalence of the virus in the cattle population are still unknown but will be the subject of future investigations.


Subject(s)
Ephemerovirus , Female , Cattle , Animals , Israel/epidemiology , Environment
6.
Vaccine ; 41(35): 5126-5133, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37451879

ABSTRACT

Bovine ephemeral fever virus (BEFV) is a globally spread arthropod-borne RNA virus that has significant economic impacts on the cattle industry. A live attenuated commercial BEF vaccine, based on the Australian BEFV strain 919, is widely used in Israel and other countries. A previous study has suggested the high effectiveness of this vaccine (ULTRAVAC BEF VACCINE™ from Zoetis®), but anecdotal reports of high BEF morbidity among vaccinated dairy herds in Israel casted doubt on these findings. To resolve this uncertainty, a randomized controlled field vaccine effectiveness study was conducted in Israel during a BEF outbreak which occurred in 2021. Eleven dairy herds were enrolled and monitored for BEF-associated morbidity and rumination alteration patterns using electronic monitoring tags (HR Tags, SCR® Dairy, Netanya, Israel). Four of the herds were naturally infected with BEFV during the outbreak, resulting in a total of 120 vaccinated and 311 unvaccinated subjects that were included in the effectiveness study. A mixed-effect Cox proportional hazard regression model was used to calculate the overall hazard ratio between vaccinated and unvaccinated cattle. This analysis demonstrated an average vaccine effectiveness of 60 % (95 % CI = 38 %-77 %) for preventing clinical disease. In addition, a non-statistically significant trend (p = 0.1) towards protection from mortality was observed, with no observation of mortality among the vaccinated groups compared to 2.61 % mortality (7/311) among the unvaccinated subjects. One hundred and thirty vaccinated and unvaccinated calves from affected and non-affected herds and with different status of morbidity were sampled and analysed by serum-neutralization test. The highest titers of BEFV-neutralizing antibodies were found in subjects that were both vaccinated and clinically affected, indicating a booster effect after vaccination. The results of the study provide evidence for the moderate effectiveness of the ULTRAVAC BEF VACCINE™ for the prevention of BEF.


Subject(s)
Ephemeral Fever Virus, Bovine , Ephemeral Fever , Viral Vaccines , Animals , Cattle , Antibodies, Viral/analysis , Australia , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Ephemeral Fever/epidemiology , Ephemeral Fever/prevention & control , Ephemeral Fever Virus, Bovine/genetics , Israel/epidemiology , Vaccines, Attenuated
7.
Microorganisms ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36838331

ABSTRACT

Israel is endemic to bluetongue virus (BTV). The introduction of novel-for-the-region arboviruses have been recorded annually in recent years. In 2019, previously non-reported in-the-country BTV-1 and BTV-9 were identified. BTV-1 caused a single-season outbreak, probably linked to mild infection in ruminants. BTV-9 was retrospectively detected in the field samples collected from August 2018 until 2020. It was the dominant serotype in 2019, out of the six serotypes recorded during that calendar year. Clinical manifestation of the disease in cases diagnosed with BTV-9 were compared to those in cases determined to have BTV-1. BLAST and phylogenetic analyses of BTV-1 showed that the nucleotide (nt) sequence coding the viral outer protein 1 (VP2) determining the serotype is closely related to BTV-1 isolated in Sudan in 1987, and the coding sequence of the outer protein 2 (VP5) is related to South African BTV-1 from 2017. A probable common ancestor with Libyan BTV-9 strains isolated in 2008 was seen in an analysis of Israeli BTV-9 nt sequences. Notably, the outbreak-caused BTV-9 strains collected in 2019 exhibited a distinct level of genetic reassortment with local Israeli strains compared to BTV-9 strains registered in 2018 and 2020.

8.
Transbound Emerg Dis ; 69(5): e2779-e2788, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35694725

ABSTRACT

Successful prevention of epidemics depends on implementation of control measures, including vaccine compliance and maintenance of high vaccination coverage for long periods. However, to the best of our knowledge, a study of the temporal dynamics of compliance in voluntary vaccination campaigns and of the factors which influence them was never published. In this study, we investigated the factors influencing the dynamics of vaccination compliance against lumpy skin disease (LSD) after the occurrence of LSD epidemics in Israel in 2012-2013 and 2019. From 2016 to 2019, we followed voluntary LSD annual vaccination among a cohort of 566 farmers and used questionnaires based on the theory of planned behaviour to investigate the incentives influencing vaccine compliance among 90 farmers. The results showed a reduction in vaccination against LSD from 61% in 2016 to 27% in 2019 and a very strong association between prior vaccination and vaccination compliance. The actual vaccination by farmers who stated a positive intention to vaccinate was 4.5 times higher than farmers who did not (p-value = .007). However, half of the highly intended farmers eventually did not vaccinate their herd. These farmers were significantly more concerned by manpower and vaccine price compared to their vaccinating counterparts, pointing to vaccination effort perceptions as a major factor influencing compliance. In addition, we found that farmers who answered the questionnaires before the LSD epidemic of 2019 perceived significantly less pressure to vaccinate imposed by veterinary organizations (private and governmental) than farmers answering them during or after the epidemic. We conclude that the veterinarian-associated social pressure is a major compliance-enhancing factor, influenced by the occurrence of an epidemic. Our findings suggest that the deterioration of vaccination compliance after an epidemic can be mitigated by maintenance of pressure to vaccinate by veterinarians. Manpower support and vaccine discounts may be advocated to promote vaccine compliance.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Animals , Cattle , Humans , Cattle Diseases/epidemiology , Farmers , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/prevention & control , Perception , Vaccination/veterinary
9.
Proc Natl Acad Sci U S A ; 119(15): e2119000119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377788

ABSTRACT

When free-roaming in natural areas, the domestic cat (Felis silvestris catus) is ranked high among the most destructive alien species. Near human dwellings, it might pose a risk to humans, impair sanitation, and suffer from poor welfare. Cats' popularity as companion animals complicates their population control. Thus, culling is often replaced by a fertility control method called "trap­neuter­return/release" (TNR), considered more humane. Despite the extensive application of TNR, a long-term controlled study was never performed to test its effectiveness. We present a uniquely designed controlled field experiment for examining TNR effectiveness. The study was performed over a 12-y period, divided into preintervention and mixed- and full-intervention phases, and spanned a 20-km2 urban area. Trends of cat, intact-female, and kitten counts, cat reproduction, and carcass reports were compared among study phases and areas with different neutering intensities. The cat population increased during the first two study phases and did not decline in highly neutered populations, presumably due to cat immigration. Expansion of high-intensity neutering to the entire city in the full-intervention phase (>70% neutering percentage) reversed cat population growth, reaching an annual approximately 7% reduction. This population reduction was limited by a rebound increase in cat reproduction and longevity. We conclude that cat population management by TNR should be performed with high intensity, continuously, and in geographic contiguity to enable population reduction. To enhance management effectiveness and mitigate compensatory effects, we recommend further evaluating an integrated strategy that combines TNR with complementary methods (e.g., vital resource regulation, ill cat euthanasia, and adoption).


Subject(s)
Cats , Sterilization, Reproductive , Animals , Female , Male , Population Control , Sterilization, Reproductive/veterinary
10.
Avian Pathol ; 51(3): 236-243, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35234543

ABSTRACT

RESEARCH HIGHLIGHTSIn 2019, there was a resurgence of NDV from sub-genotype VII.2 in Israel, in an already endemic area of sub-genotype VII.1.A mismatch at the 3' end of the reverse primer caused a diagnostic failure of the NDV virulence differentiation rRT-PCR assay.The 2019 NDV sub-genotype VII.2 virus is genetically close to viruses from Jordan (2018) and Pakistan (2015-2016).


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Chickens , Genotype , Israel/epidemiology , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Phylogeny , Point Mutation , Poultry Diseases/epidemiology
12.
EFSA J ; 20(1): e07121, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35106095

ABSTRACT

EFSA received a mandate from the EC to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures are assessed, with this opinion covering the assessment of control measures for Lumpy Skin Disease (LSD). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: i) clinical and laboratory sampling procedures, ii) monitoring period and iii) the minimum radius of the protection and surveillance zones, and the minimum length of time that measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period was assessed as effective, and based on the transmission kernels available, it was concluded that the protection zone of 20 km radius and the surveillance zone of 50 km radius would comprise > 99% of the transmission from an affected establishment if transmission occurred. Recommendations provided for each of the assessed scenarios aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to LSD.

13.
Microorganisms ; 9(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576850

ABSTRACT

Outbreaks of the European Bluetongue virus (BTV) serotype 8 (BTV-8), which are characterized by activity cycles separated by years of inactivity, may be influenced by genetic changes of the virus or by herd immunity. BTV activity in Israel is characterized by similar dynamics, but differs from European countries in its vector population, environmental conditions, and lack of cattle vaccination against this serotype. Comparison of these two geographical systems and characterization of their epidemiological connection is therefore of high interest in-order to better understand the factors influencing BTV-8 evolution. BTV-8, closely related to the European strain, was introduced to Israel in 2008. It was at the center of BT outbreaks in 2010 and 2015-2016 and thereafter was lastly isolated in Israel in 2019. We performed genetic analyses of twelve BTV-8 Israeli strains isolated between 2008 and 2019 and compared them with published sequences of BTV-8 isolated in other countries. The analysis revealed a single introduction of BTV-8 into Israel and thereafter extensive occurrence of genomic drifts and multiple reassortments with local BTV strains. Comparison of the Israeli and Cypriot BTV-8 from 2015 to 2016 suggests transmission of the virus between the two countries and a separate and parallel development from European or other Israeli BTV-8 strains. The parallel development of other BTV-8 strains was demonstrated by the identification of the Israeli BTV-8 ISR-1194/1/19 strain, which exhibited common origin with reassorted Israeli BTV-8 strains from 2010 and additional reassortment of seven segments. In order to reveal the source of BTV-8 introduction into Israel we performed BEAST analysis which showed that a probable common ancestor for both European and Israeli BTV-8 presumably existed in 2003-2004. In 2019, a possible new introduction occurred in Israel, where a novel BTV-8 strain was detected, sharing ~95% identity by segments 2 and 6 with Nigerian BTV-8NIG1982/07 and European-Middle Eastern strains. The results of the study indicate that Israel and neighboring countries consist a separate environmental and evolutionary system, distinct from European ones.

14.
EFSA J ; 19(6): e06632, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136003

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for foot and mouth disease (FMD). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: i) clinical and laboratory sampling procedures, ii) monitoring period and iii) the minimum radius of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radius of the protection zone of 3 km and of the surveillance zone of 10 km are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, and it was concluded that the protection and the surveillance zones comprise > 99% of the infections from an affected establishment if transmission occurred. Recommendations, provided for each of the scenarios assessed, aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to FMD.

15.
EFSA J ; 19(1): e06402, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33552298

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for African Swine Fever (ASF). In this opinion, EFSA and the AHAW Panel of experts reviewed the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for ASF are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, several sampling procedures as described in the diagnostic manual for ASF were considered ineffective and a suggestion to exclude, or to substitute with more effective procedures was made. The monitoring period was assessed as non-effective for several scenarios and a longer monitoring period was suggested to ensure detection of potentially infected herds. It was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment, and therefore is considered effective. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to ASF.

16.
EFSA J ; 19(2): e06403, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552302

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for African Horse Sickness (AHS). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum duration of measures in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures were assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures described in the diagnostic manual for AHS were considered efficient for all Equidae considering the high case fatality rate expected. The monitoring period (14 days) was assessed as effective in every scenario, except for those relating to the epidemiological enquiry where the risk manager should consider increasing the monitoring period, based on the awareness of keepers, environmental conditions and the vector abundance in the region. The current protection zone (100 km) comprises more than 95% of the infections from an affected establishment. Both the radius and duration of the zones could be reduced, based on local environmental conditions and the time of year of the first index case. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation relating to AHS.

17.
EFSA J ; 19(1): e06372, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33488812

ABSTRACT

EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Highly Pathogenic Avian Influenza (HPAI). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radius of the protection and surveillance zone, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, specific details of the model used for the assessment of the laboratory sampling procedures for HPAI are presented here. Here, also, the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. In summary, sampling procedures as described in the diagnostic manual for HPAI were considered efficient for gallinaceous poultry, whereas additional sampling is advised for Anseriformes. The monitoring period was assessed as effective, and it was demonstrated that the surveillance zone comprises 95% of the infections from an affected establishment. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to HPAI.

18.
Transbound Emerg Dis ; 68(6): 3025-3033, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33314697

ABSTRACT

Tilapia lake virus (TiLV) is an emerging viral disease that affects several tilapia species in different countries since 2014. In 2017-2018, 129 samples were collected from 14 tilapia farms in Israel. Ninety samples represented mortality events (ME), and 39 were used as control samples (CS). RT-qPCR was performed on 89 and 39 duplicate brain and liver tissue samples from ME samples and CS, respectively. TiLV was diagnosed in 37 (41.6%) ME, while only two of the CS samples (5%) were positive for TiLV (OR = 13.2, 95% CI = 3.0-58.1). Additional RT-PCR was performed on positive samples, and amplified products were sequenced. Maximum likelihood phylogenetic analysis of segment-3 revealed three distinct clades: the first clade (A) includes 25 sequences of TiLV, detected previously in Israel (2011), Ecuador (2012), Egypt (2015), Thailand (2015-2019), India (2017), Peru (2018) and USA (2018-2019) and 11 sequences of TiLV from the current study (2017-2018); the second clade (B) includes only four sequences from Thailand (2018) and Bangladesh (2017 and 2019); and a third clade (C) which includes a single sequence from Bangladesh (2019). Out of the 39 sequences included in clade A, 14 closely related sequences of TiLV from the current study (2018) formed a distinctive sub-clade (IL-2018). Mann-Whitney U test showed differences in the distribution of survival rates between Israeli sequences (from 2011, 2017 and 2018) of clade A (p = 0.004) and Israeli sequences (from 2018 solely) of sub-clade IL-2018. The average survival rates of clade A and sub-clade IL-2018 were 58.1% (SD = 21.5) and 31.2% (SD = 25.6), respectively. This is one of only few field studies which show direct association of TiLV with mortality events in tilapia farms. The decrease in survival rate in the newly evolved clade might raise concern regarding virus evolution towards increased virulence, which should be further explored.


Subject(s)
Fish Diseases , Orthomyxoviridae Infections , Tilapia , Animals , Fish Diseases/epidemiology , Israel/epidemiology , Orthomyxoviridae Infections/veterinary , Phylogeny
19.
EFSA J ; 18(2): e06010, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32874220

ABSTRACT

In 2019, no lumpy skin disease (LSD) outbreaks were reported in South-Eastern Europe, the mass vaccination regional campaign with homologous LSD vaccine continued for the fourth year with over 1.8 million bovines vaccinated in the region, preventing further outbreaks since 2016. LSD outbreaks were reported in Turkey, including western Turkey, in Russia and in eastern Asia affecting China, Bangladesh and India for the first time. The use of homologous vaccine should be considered in the countries still affected in order to eliminate the virus. Besides passive surveillance, which is implemented in all the countries, active surveillance for early detection based on clinical examination could be conducted ideally during April-October every 5 weeks in at-risk areas, based on possible re-emergence or re-introduction from affected neighbouring countries. Active surveillance for proving disease freedom could be based on serological testing (enzyme-linked immunosorbent assay (ELISA)) targeting 3.5% seroprevalence and conducted on a random sample of cattle herds on non-vaccinated animals. LSD re-emerged in Israel in 2019, after vaccination became voluntary. This shows that, if the virus is still circulating in the region, the reduced protection might result in re-emergence of LSD. In case of re-emergence, a contingency plan and vaccine stockpiling would be needed, in order to react quickly. From a study performed in Israel to test side effects of live-attenuated homologous LSD vaccine, milk production can be reduced during 7 days after vaccination (around 6-8 kg per cow), without a significant loss in the 30 days after vaccination. Research needs should be focused on the probability of transmission from insect to bovine, the virus inactivation rate in insects, the collection of baseline entomological data, the capacity of vector species in LSDV transmission linked to studies on their abundance and the control of Stomoxys calcitrans being the most important vector in LSD transmission.

20.
Vaccines (Basel) ; 8(2)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575395

ABSTRACT

Lumpy skin disease (LSD) is an economically important, arthropod borne viral disease of cattle. Vaccination by the live attenuated homologous Neethling vaccine was shown as the most efficient measure for controlling LSD. However, adverse effects due to vaccination were never quantified in a controlled field study. The aim of this study was to quantify the milk production loss and mortality due to vaccination against LSD. Daily milk production, as well as culling and mortality, were retrieved for 21,844 cows accommodated in 77 dairy cattle farms in Israel. Adjusted milk production was calculated for each day during the 30 days post vaccination. This was compared to the preceding month by fitting mixed effects linear models. Culling and mortality rates were compared between the 60 days periods prior and post vaccination, by survival analysis. The results of the models indicate no significant change in milk production during the 30 days post vaccination period. No difference was observed between the pre- and post-vaccination periods in routine culling, as well as in immediate culling and in-farm mortality. We conclude that adverse effects due to Neethling vaccination are negligible.

SELECTION OF CITATIONS
SEARCH DETAIL