Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(46): 70380-70395, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35585460

ABSTRACT

On August 4, 2014, a tailings dam failed at the Mount Polley copper and gold mine near Likely, British Columbia, Canada, releasing approximately 25 M m[Formula: see text] of contaminated water and solid tailings material into Polley and Quesnel lakes. Water, sediment, freshwater scuds (Hyalella azteca), and mayfly larvae (Ephemeroptera) were collected during the summer of 2018 from Polley Lake, affected and unaffected sites in Quesnel Lake, and both mine-contaminated and clean far-field sites as references. Analytical results indicated that invertebrates from sites affected by the tailings breach had elevated metal concentrations relative to those from non-affected or reference sites. We conducted a controlled laboratory exposure to determine if laboratory-reared Hyalella azteca metal concentrations were related to field-collected water or sediments from the same sites as the field study. Half of the replicates prevented amphipods from directly contacting sediments (water-only exposure), while the other half allowed them direct access (sediment and water exposure). Whole-body Cu concentration was highest in Hyalella exposed to substrate from the most contaminated sites as well as in treatments where they were allowed direct access to sediments. Hyalella having direct access to metal-contaminated sediments showed reduced survival and growth relative to those in reference or control treatments. These results suggest that metals from the fine sediments associated with the Mount Polley mine disaster are bioavailable and potentially toxic to epibenthic invertebrates, even several years after the initial breach.


Subject(s)
Amphipoda , Disasters , Ephemeroptera , Water Pollutants, Chemical , Animals , British Columbia , Copper/toxicity , Geologic Sediments , Gold , Invertebrates , Lakes , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Toxicol Chem ; 40(7): 1810-1821, 2021 07.
Article in English | MEDLINE | ID: mdl-33749926

ABSTRACT

Amphibian populations are declining globally. Major drivers of these global declines are known. However, the contribution of these major drivers to population declines varies by the presence or absence and the interactive effect of drivers, thus creating local challenges for conservation of populations. Studies have determined that environmental contaminants contribute to amphibian population declines. However, there is a disagreement over the use of amphibians as sentinel species in ecotoxicological testing rather than the traditional taxa used, fish and invertebrates. Reviews of ecotoxicological studies have demonstrated that amphibians are generally less sensitive than fish and invertebrates to different groups of contaminants. Nonetheless, because of the distinct nature and mechanism of toxicity of various contaminants, it is necessary to study contaminants individually to be able to come to any conclusion on the relative sensitivity of amphibians. Copper is one of the most studied environmental contaminants. We conducted a literature review of Cu toxicity to amphibians and the relative sensitivity of amphibians to other aquatic animals. The available data suggest that although amphibians may be tolerant of acute Cu exposure, they are relatively sensitive to chronic exposure (i.e., 100-fold greater sensitivity to chronic compared to acute exposure). In addition, ecologically relevant endpoints specific to amphibians (e.g., duration of metamorphosis and behavior) are shown to provide a better understanding of their sensitivity compared to traditional endpoints (e.g., survival and growth). Our current knowledge on amphibian sensitivity is far from complete. Considering the current status of this globally threatened class of animals, it is necessary to fill the knowledge gaps regarding their sensitivity to individual contaminants, beginning with Cu. Environ Toxicol Chem 2021;40:1810-1821. © 2021 SETAC.


Subject(s)
Amphibians , Copper , Animals , Copper/toxicity , Fishes , Invertebrates
3.
Chemosphere ; 272: 129892, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33601202

ABSTRACT

Naphthenic acid fraction compounds (NAFCs) are a toxicologically relevant component of oil sands process-affected materials (OSPM). For the first time, we report on differences in the concentrations and distribution of NAFCs from wetlands on an Athabasca oil sands mine site with varied histories of solid and liquid OSPM input. Sampling locations included natural and naturalized reference wetlands, a reclaimed tailings pond, wetlands supplemented with OSPM, opportunistic wetlands, and tailings ponds. Samples were prepared using solid-phase extraction, and analyzed by high-resolution Orbitrap mass spectrometry; NAFC concentrations and characteristics were evaluated for all locations. The NAFCs from tailings ponds were dominated by O3-NAFCs and classical naphthenic acids (NAs; i.e., O2 species) with double bond equivalences of 3 and 4. Reference wetlands had no dominant species, and relatively little NAFC content. The heteroatomic species in opportunistic wetlands were dominated by highly-oxidized NAFC species, where Σ [O3:O6] species constituted 55-75% of the assignable spectrum and 3-4% NAs; in tailings ponds NAs constituted 47-51%. A relatively young (4-year-old) wetland built on a former tailings pond had NAFC concentrations between 65 and 80 mg/L, and NAs constituted 47% of the assignable spectrum. There was thus little apparent oxidation of NAFCs at this young wetland. The composition of NAFCs from one wetland (≥15 years old) supplemented with OSPM contained a greater proportion of oxidized species than tailings, suggesting NAFC transformation therein. These data suggest that while NAFCs are persistent in some wetlands, there is preliminary evidence for oxidation in mature wetlands.


Subject(s)
Water Pollutants, Chemical , Wetlands , Carboxylic Acids , Oil and Gas Fields , Water Pollutants, Chemical/analysis
4.
Environ Toxicol Chem ; 39(10): 1988-1997, 2020 10.
Article in English | MEDLINE | ID: mdl-32678916

ABSTRACT

The frequency of wildfire is expected to increase with time as a function of climate change. Recent studies in our laboratory have demonstrated that pyrogenic polycyclic aromatic hydrocarbons can cause greater-than-additive effects in Hyalella azteca in the presence of low concentrations of Cu. We hypothesized that freshwater animals inhabiting Cu-contaminated sites, such as those in the vicinity of Cu mines, may be vulnerable to nonadditive toxicity from contaminants released by wildfires. To investigate the interaction between Cu and water conditioned by burnt wood ash (fire extract), we exposed H. azteca for 14 d to binary mixtures of 225 mg/kg Cu-enriched artificial sediment (225 mg Cu/kg) and a fire extract dilution series (12.5, 25, 50, 75, and 100%). All binary mixtures of Cu-enriched sediment and fire extract resulted in complete mortality with the exception of Cu-enriched sediment + 12.5% fire extract. The combination of Cu-enriched sediment with 12.5% fire extract had a more-than-additive effect on survival and tissue Cu concentration, but there was no reduction in growth or acetylcholinesterase activity compared to the 225 mg/kg Cu-contaminated sediment or fire extract control, respectively. Acetylcholinesterase activity was significantly reduced in amphipods exposed to fire extract, but the presence of Cu did not exacerbate this effect. The results suggest that Cu-contaminated water bodies that receive runoff from wildfires are at risk of enhanced toxicity. Environ Toxicol Chem 2020;39:1988-1997. © 2020 SETAC.


Subject(s)
Amphipoda/drug effects , Copper/toxicity , Fresh Water/chemistry , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Wildfires , Animals , British Columbia , Models, Theoretical
5.
Environ Toxicol Chem ; 37(9): 2458-2466, 2018 09.
Article in English | MEDLINE | ID: mdl-29920776

ABSTRACT

Nickel (Ni) concentrations in aquatic ecosystems can be amplified by anthropogenic activities including resource extraction. Compared with fish and invertebrates, knowledge of Ni toxicity in amphibians is limited, especially for northern species. We examined the effect of Ni on wood frog (Lithobates sylvaticus) tadpoles, the species with the widest and most northern distribution of any anuran in North America. Wood frog tadpoles were exposed to a Ni concentration gradient (0.02-5.5 mg/L of Ni at 164 mg/L as CaCO3 water hardness) for 8 d and examined for lethality, Ni bioaccumulation, and several sublethal endpoints including body condition, food consumption, activity, and chemosensory function. Nickel induced a sublethal effect on body condition (8-d 10 and 20% effect concentrations [EC10 and EC20] of 1.07 ± 0.38 and 2.44 ± 0.51 mg/L of Ni ± standard error [SE], respectively) but not on food consumption, activity, or chemosensory function. Nickel accumulation in tadpole tissues was positively related to an increase in aqueous Ni concentration but was not lethal. Both the acute and chronic US Environmental Protection Agency water quality guideline concentrations for Ni (0.71 and 0.08 mg/L at 164 mg/L as CaCO3 water hardness, respectively) were protective against lethal and sublethal effects in wood frog tadpoles. In the present study, wood frog tadpoles were protected by current water quality guidelines for Ni and are likely not as useful as other taxa for environmental effects monitoring for this particular metal. Environ Toxicol Chem 2018;37:2458-2466. © 2018 SETAC.


Subject(s)
Acclimatization/drug effects , Eating/drug effects , Larva/drug effects , Motor Activity/drug effects , Nickel/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Larva/metabolism , North America , Ranidae , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...