Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792197

ABSTRACT

The impact of fluorine on plants remains poorly understood. We examined duckweed growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally, fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying distances from the manure pile. Fresh manure contained 37-48 mg F- × kg-1, while soil extracts contained 2.1 to 4.9 mg F- × kg-1. We evaluated the physiological effects of fluorine on duckweed cultured on soil extracts or in 50% Murashige-Skoog (MS) medium supplemented with fluorine concentrations matching those in soil samples (2.1 to 4.9 mg F- × L-1), as well as at 0, 4, and 210 mg × L-1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F- × L-1 reduced the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+. This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and formation of a new band of the F--chlorophyll a complex at λ = 421 nm. Moreover, plants exposed to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride concentration exceeded 4.9 mg × L-1. Consequently, fluorine damages chlorophyll a, disrupts the activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the effects of these disruptions are too subtle to be discerned by the naked human eye.


Subject(s)
Araceae , Chlorophyll , Fluorides , Araceae/metabolism , Araceae/drug effects , Araceae/growth & development , Chlorophyll/metabolism , Fluorides/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Soil/chemistry , Manure/analysis , Environmental Pollution/analysis
2.
Sci Total Environ ; 858(Pt 3): 160014, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36368402

ABSTRACT

Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.


Subject(s)
Agriculture , Animal Husbandry , Poultry , Humans , Quality of Life , Occupational Exposure , Environment
3.
J Hazard Mater ; 442: 130073, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36209611

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) tend to accumulate in the sediment due to their high hydrophobicity. Despite PAHs have been the subject of several reviews, PAH sorption processes in bottom sediments has not been comprehensively discucorrelation coefficients between sorption parameters and contessed. Understanding the dependencies governing PAH sorption processes will allow to predict, monitor, and mitigate the ecological effects of PAH contamination and the associated risks to humans or wildlife. The objectives of the study were to assess the relationship between the sorption properties and the content of PAHs in bottom sediments and mussels. The PAH profile was dominated by higher-molecular hydrocarbons, which accounted for 73% of the total concentration of PAHs. Potentiometric studies revealed the steric-based PAH sorption mechanism that strongly depended on the presence of negatively dissociating structures such as carboxylic or phenolic functional groups. Based on the changes in Q8 values, the size-exclusion effect was more likely for 5- and 6-ring compounds. Pores < 5 µm, which had the largest share in the specific surface area, were the preferred sites for PAH sequestration and stabilization in bottom sediments. The availability of PAHs was reduced in sediments with high organic matter content. The PAH bioaccumulation factor significantly decreased with increasing TOC content in sediments. Higher mortality and growth inhibition of H. incongruens were observed in samples with high and medium TOC contents than in those with low TOC content.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments/chemistry , Bioaccumulation , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Monitoring
4.
J Hazard Mater ; 416: 126087, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492901

ABSTRACT

Anthropogenic activities leading to chemical contamination of soil and global climate change may increase the level of stress for plants. Recent decades studies (mainly two-factors) have reported that the ecotoxicity of soil contaminants could be modified by climate factors. To date, little is known about: the combined climate-chemical stress on plants; the interaction of chemicals with high soil moisture conditions; the impact of soil properties on the combined climate-chemical stress and questions regarding the response of organisms to combined effect of all key factors influencing the ecotoxicity of chemicals under field conditions remain unanswered. Our study sought to fill the knowledge gap on the multifactorial interaction of four main factors encounter in polluted areas (soil chemical contamination: heavy metal (Zn); temperature: 10, 23, 35 °C, moisture: 55, 80%WHC; soil properties). The assessment of combined effect of multiple stressors based on the multiple ANCOVA model (n = 108; adjusted R2 = 0.68) and calculated indicators showed: 1) all studied factors significantly interacted and influenced the phytotoxic effect of Zn; 2) Zn modified the plant response to temperature stress depending on moisture conditions and soil properties. This study improves methods for assessing the hazardous effects of soil chemical contamination in the real environment.


Subject(s)
Soil Pollutants , Soil , Seedlings , Soil Pollutants/analysis , Soil Pollutants/toxicity , Temperature , Triticum , Zinc/analysis , Zinc/toxicity
5.
Environ Geochem Health ; 43(11): 4701-4718, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33969453

ABSTRACT

The aim of the study was to use of geochemical, chemical, ecotoxicological and biological indicators for a comprehensive assessment of ecological risks related to the mobility, ecotoxicity and bioavailability of trace elements in the bottom sediment of the Roznów reservoir. The study found three elements deserving attention in the sediments: cadmium, nickel and chromium. Cadmium proved to be the most mobile and bioavailable, although the total cadmium content and geochemical indicators did not reveal any risk to organisms. Geochemical indicators showed that the sediments are contaminated with nickel and chromium, but both elements had a low bioaccumulation factor. Fractional analysis also revealed relatively low mobility of Cr and Ni and a higher potential risk of bioavailability for nickel. Most of the tested sediment samples had low toxicity in relation to the tested organisms. For H. incongruens, 11% of the samples were non-toxic, 50% of the samples had low toxicity, and 39% of the samples were toxic. For A. fischeri, no toxicity was found in 7% of the samples, low toxicity in 76% of the samples and toxicity in 17% of the sediment samples. The As, Cd, Cu content in the F1 fraction correlated significantly positively with the content of these metals in mussel tissues. Both biotesting and chemical analysis can reveal a potential risk to aquatic organisms. For a real assessment of the ecological risks associated with trace elements, it is necessary to use bioindicators taken from the environment and exposed to trace elements in situ.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Bioaccumulation , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Metals, Heavy/toxicity , Trace Elements/analysis , Trace Elements/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
J Environ Manage ; 273: 111176, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32763744

ABSTRACT

In the study, an attempt was made to create innovative mixtures based on bottom sediment and various types of waste to be tested for use as a substrate in the cultivation of consumer and non-consumer plants. The aim of the study was to assess the chemical and ecotoxicological properties of the growing medium prepared on the basis of bottom sediment (BS) and different carbon rich waste (cellulose waste (CW), biomass ash (BA), coffee hulls (CH), and sludge from water treatment (SW)) with a combination of 75% bottom sediment and 25% waste material. The mixtures had deacidifying properties, significant content of total organic carbon (TOC), the total quantities of macro- and micronutrients, and good sorption properties. The study showed a low total content of heavy metals in the mixtures. Moreover, a low share of the mobile fraction (F1) of metals indicated a low risk related to the metals mobility and potential bioavailability. The highest toxic effect was found in the mixture of bottom sediment and cellulose waste. Heterocypris incongruens was the most sensitive organism to substances present in the tested mixtures. Due to its low toxicity, the mixture of bottom sediment and water treatment sludge (BS+SW) constituted a potentially suitable substrate for its environmental application in agriculture, horticulture (for consumer crops) or land reclamation. Other mixtures exhibited valuable chemical properties (BS + BA, BS + CH BS + CW), but ended up being eco-toxic to the organisms, excluding them from agricultural or horticultural use for consumer crops. The proposed technology, which includes the production of growing medium based on the use of bottom sediment, is a promising way of transforming the sediment from a waste material to a valuable resource, thus enhancing the environmental benefits.


Subject(s)
Ecotoxicology , Metals, Heavy/analysis , Agriculture , Sewage , Waste Products
7.
Molecules ; 25(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660157

ABSTRACT

Intensive anthropogenic activity may result in uncontrolled release of various pollutants that ultimately accumulate in soils and may adversely affect ecosystems and human health. Hazard screening, prioritisation and subsequent risk assessment are usually performed on a chemical-by-chemical basis and need expensive and time-consuming methods. Therefore, there is a need to look for fast and reliable methods of risk assessment and contamination prediction in soils. One promising technique in this regard is visible and near infrared (VIS-NIR) spectroscopy. The aim of the study was to evaluate potential environmental risk in soils subjected to high level of anthropopressure using VIS-NIR spectroscopy and to calculate several risk indexes for both individual polycyclic aromatic hydrocarbons (PAHs) and their mixture. Results showed that regarding 16PAH concentration, 78% of soil samples were contaminated. Risk assessment using the most conservative approach based on hazard quotients (HQ) for 10 individual PAHs allowed to conclude that 62% of the study area needs further action. Application of concentration addition or response addition models for 16PAHs mixture gave a more realistic assessment and indicates unacceptable risk in 23% and 55% of soils according to toxic units (TUm) and toxic pressure (TPm) approach. Toxic equivalency quotients (TEQ) were below the safe limit for human health protection in 88% of samples from study region. We present here the first attempt at predicting risk indexes using VIS-NIR spectroscopy. The best results were obtained with binary models. The accuracy of binary model can be ordered as follows: TPm (71.6%) < HI (85.1%) < TUm (87.9%) and TEQ (94.6%). Both chemical indexes and VIS-NIR can be successfully applied for first-tier risk assessment.


Subject(s)
Agriculture , Ecosystem , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Spectroscopy, Near-Infrared
8.
Ecotoxicology ; 29(1): 45-57, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31784924

ABSTRACT

The bottom sediments in catchment areas behind dams play a significant role in water ecosystems. On the other hand, the structure of sediments makes them a natural geosorbent, in which pollutants introduced to the aquatic environment accumulate. The use of biotests is recognised as an important approach for the assessment of the quality of bottom sediments, as the chemical analysis of sediment samples alone does not provide evidence of the impact of contaminants on biota. The aim of the study was to apply the chemical and ecological indices to determine the potential risk posed by trace elements in the bottom sediments and to evaluate sediment toxicity using organisms belonging to two taxonomic groups, i.e., plants (Phytotoxkit) and crustaceans (Rapidtoxkit). The 46 sediment samples were taken from the Roznów Dam Reservoir in Southern Poland. The mean concentration of the trace elements in the sediments was 5.22 mg As; 0.26 mg Cd; 63.23 mg Cr; 28.65 mg Cu; 37.11 mg Ni; 11.15 mg Pb; 69.69 mg Zn and 0.09 mg Hg ∙ kg-1 d.m. The mean probable effect concentration quotient (PECq) value among different sampling sites ranged between 0.04 and 0.33 suggested moderate potential toxicity to the biological communities in bottom sediments. The Ni was potentially the most toxic element for biota in the Roznów Reservoir. The sensitivity of organisms formed the following order: Thamnocephalus platyurus >Lepidium sativum >Sinapis alba >Sorghum saccharatum. For the plants, the stimulating effect of bottom sediments on root growth was often indicated, while a toxic effect was demonstrated for T. platyurus in 80% of the samples. However, the correlation analysis and PCA results showed that trace elements that originated from similar sources were associated to the toxicity of sediments towards T. platyurus, while ecotoxicity for plants could not be explained by the content of trace elements in bottom sediments. T. platyurus is a good indicator for predicting the toxicity of bottom sediments from the Roznów Reservoir. However, our study found that both chemical and ecotoxicological analyses are important for a comprehensive evaluation of the quality of bottom sediments.


Subject(s)
Environmental Monitoring , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Aliivibrio fischeri , Animals , Anostraca , Crustacea , Ecology , Ecosystem , Ecotoxicology , Geologic Sediments/chemistry , Lepidium sativum , Metals, Heavy , Poland , Risk Assessment , Sinapis , Trace Elements/toxicity , Water Pollutants, Chemical/toxicity
9.
J Hazard Mater ; 368: 274-280, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30685715

ABSTRACT

A few previous studies showed that the low soil moisture could interact with the toxic effect of the polycyclic aromatic hydrocarbons (PAHs) towards animals (mostly invertebrates). In the present research the impact of the soil moisture in the wide range (from the drought to high moisture conditions) in three different soil materials on toxic effect of the PAH (phenanthrene) towards soil microorganisms (nitrifying bacteria activity) was evaluated. The three dry soil materials were artificially contaminated with phenanthrene (0, 1, 10, 100 and 1000 mg kg-1 dry mass of soil) and moistened to the varied levels of the soil moisture (30% WHC (dry), 55% WHC (optimal) and 80% WHC (highly wet conditions)). After 7 days incubation, the nitrification potential was measured. The results of the proposed ANCOVA multiple regression model (adjusted R2 = 0.91), showed that the increase of soil moisture enhanced the toxicity of the phenanthrene towards nitrification potential and this combined moisture-phenanthrene effect was soil dependent. Therefore, the effect of the soil moisture in combination with the soil diversity should not be missed in the ecotoxicological risk assessment of the PAHs.


Subject(s)
Droughts , Nitrosomonas/drug effects , Phenanthrenes/toxicity , Soil Microbiology/standards , Soil Pollutants/toxicity , Soil/chemistry , Biodegradation, Environmental , Models, Theoretical , Nitrification , Nitrosomonas/growth & development , Poland , Wettability
10.
Environ Geochem Health ; 41(3): 1369-1385, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30467649

ABSTRACT

The aim of the study was ecological risk assessment (ERA) of the agricultural soils located in the vicinity of the highly industrialized area and exposed to different emission sources of polycyclic aromatic hydrocarbons (PAHs). In this study, we demonstrated the combination of generic and site-specific ERA approach for screening assessment and delineation of the area of a high ecological risk. Generic approach was based on a hazard quotient and indicated that 62% of the research area needs further assessment. For site-specific evaluation, the Triad approach was utilized. Information from three lines of evidence (LoE): chemical, ecotoxicological and ecological, was integrated into one environmental risk (EnvRI) index. The chemical risk was derived from toxic pressure coefficients based on the total PAHs concentration. The ecotoxicological LoE included an acute toxicity testing: the luminescent bacteria Aliivibrio fischeri activity in both liquid- and solid-phase samples and the ability of crustacean Thamnocephalus platyurus to food uptake. The ecological LoE comprised microbial parameters related to soil respiration and enzymatic activity. Integrated EnvRI index ranged from 0.44 to 0.94 and was mainly influenced by high values of chemical LoE risk, while the ecotoxicological and ecological LoE indicated no or low risk. Due to the relatively high uncertainty associated with the contradictory information given by LoEs, there is the need to confirm potential risk in a tier 2 analysis.


Subject(s)
Ecotoxicology/methods , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment/methods , Soil Pollutants/analysis , Agriculture , Aliivibrio fischeri/drug effects , Animals , Crustacea/drug effects , Environmental Monitoring , Poland , Polycyclic Aromatic Hydrocarbons/toxicity , Soil/chemistry , Soil Pollutants/toxicity , Toxicity Tests, Acute
11.
Environ Geochem Health ; 40(1): 435-450, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28229257

ABSTRACT

The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg-1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg-1 d.m. (0.01 mol dm-3 CaCl2), and between 0.03 and 71.54 mg kg-1 d.m. (1 mol dm-3 NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.


Subject(s)
Ecology , Soil Pollutants/analysis , Soil/chemistry , Zinc/analysis , Biological Availability , Carbon/analysis , Environmental Monitoring/methods , Poland , Principal Component Analysis , Risk Assessment , Soil Pollutants/metabolism , Soil Pollutants/toxicity
12.
Environ Toxicol Chem ; 37(4): 1197-1207, 2018 04.
Article in English | MEDLINE | ID: mdl-29150956

ABSTRACT

Production of biochar from sewage sludge may be a promising solution for sewage sludge management and improvement of soil properties, including carbon dioxide sequestration. The aim of the present study was to compare the effects of biochars derived from different sewage sludges on soil physicochemical and biological properties, ecotoxicity, and plant yield. Three biochars (produced at a temperature of 300 °C) were applied into sandy acid soil in doses of 0.5, 1, and 2% (w/w). Depending on the type and dose, the application of sewage sludge biochars into the soil caused diverse effects on the parameters of soil biological activity (microbial biomass [Cmic], soil respiration, and value of metabolic quotient). No correlation between the applied dose of biochars and inhibition of Vibrio fischeri luminescence was observed. The factor with a stronger impact on the activity of V. fischeri was the type of biochar. The use of the OSTRACODTOXKIT F test (MicroBioTests) showed that the addition of sewage sludge biochar (regardless of its dose) reduced the soil toxicity to Heterocypris incongruens compared with the control soil. A significant increase of Poa pratensis L. biomass was obtained in soils with 1 and 2% additions of each of the biochars. The addition of biochars in doses of 1 and 2% to the soil had greater effect on the content of mobile forms of Cu, Pb, and Cd than the 0.5% dose compared with the control. Environ Toxicol Chem 2018;37:1197-1207. © 2017 SETAC.


Subject(s)
Biomass , Charcoal/toxicity , Ecotoxicology , Metals, Heavy/analysis , Sewage/chemistry , Soil Microbiology , Aerobiosis , Poaceae/drug effects , Soil/chemistry , Soil Pollutants/toxicity , Temperature , Toxicity Tests
13.
Environ Sci Pollut Res Int ; 24(29): 23180-23195, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28828716

ABSTRACT

The aims of the study were to investigate the concentration, sources and ecological risk of PAHs (polycyclic aromatic hydrocarbons) in bottom sediments collected from nine reservoirs located in south-eastern Poland. The concentration of ∑PAHs in sediments ranged from 150 to 33,900 µg kg-1. The total PAH concentration in the bottom sediments was arranged in the following order: Rybnik > Rzeszów > Brzóza Królewska > Brzóza Stadnicka > Besko > Chechlo > Ozanna > Gluchów > Narozniki. BAP was the major compound in sediments from the Besko, Brzóza Stadnicka and Rzeszów reservoirs; FLT in the sediments from the Rybnik, Narozniki, Ozanna and Brzóza Królewska reservoirs; and FLN from the Gluchów and Chechlo reservoirs. The major inputs of PAHs were of pyrolytic origin. However, petrogenic sources of PAHs occurred especially in the Chechlo and Gluchów reservoirs. The ecological risk assessment indicated that non-adverse effects on the benthic fauna may occur for sediments from the Gluchów, Narozniki and Ozanna reservoirs, while slightly adverse effects were found for sediments from the Brzóza Królewska, Besko, Brzóza Stadnicka and Chechlo reservoirs. The other sediments showed moderate (Rzeszów reservoirs) and strong effect (Rybnik reservoir) on biological communities. Individual PAHs such as NAP, PHE, FLT, PYR, BAA, CHR and BAP in sediments from the Rybnik reservoir and BAP in sediments from the Rzeszów reservoirs indicated a higher possibility of occurrence of an adverse ecological effect. PCA analysis found slight difference between the reservoirs in the profile of variable PAHs. Only the sediments from the Rybnik and Chechlo reservoirs differ considerably from this grouping.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Poland , Risk Assessment
14.
Environ Sci Pollut Res Int ; 24(12): 10955-10965, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27068894

ABSTRACT

The level of 16PAH accumulation was determined in 75 soil samples collected from two agricultural regions of Poland corresponding to the smallest Polish administrative unit at the LAU 2 level. Both regions are characterised by similar territory and soil cover but different history of pollution and different pressure of anthropogenic factors. Overall accumulation of Σ16PAHs in the upper soil layer was within a wide range with the median value of 291 and 1253 µg kg-1 for a non-contaminated and high anthropopressure region, respectively. Nearly 75 % of the total polycyclic aromatic hydrocarbon (PAH) pool was represented by high molecular four-to-six-ring compounds, deriving mainly from combustion sources. The total organic carbon (Corg) and black carbon (BC) contents were the main parameters associated with the PAH accumulation in soils, and the level of the regional anthropopressure was considered a significant factor. The strongest links of PAHs/BC (r = 0.70, p ≤ 0.05) were found in the region of high anthropopressure, characterized by a relatively high content of BC (up to 45.3 g kg-1), which tends to heavily adsorb hydrocarbons. In a region of low influence exerted by anthropopressure, the PAH/Corg or PAH/BC relationships were not observed, which may suggest different diffuse sources of PAH origin and a dominant role of other organic matter fractions in retention of PAHs in soils.


Subject(s)
Agriculture , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil , Poland
15.
Environ Pollut ; 216: 911-918, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27394082

ABSTRACT

This study focused on the combined effect of environmental conditions (temperature) and contamination (polycyclic aromatic hydrocarbons, PAHs) on the activity of soil microorganisms (nitrifying bacteria). Phenanthrene (Phe) at five contamination levels (0, 1, 10, 100 and 1000 mg kg(-1) dry mass of soil) was employed as a model PAH compound in laboratory experiments that were conducted at three temperatures (i.e., 20 °C (recommended by ISO 15685 method), 15 and 30 °C). Three soils with different properties were used in these studies, and the activity of the nitrifying bacteria was assessed based on nitrification potential (NP) determinations. For the statistical evaluation of the results, the ANCOVA (analysis of covariance) method for three independent variables (i.e., temperature, phenanthrene concentration, soil matrix (as a qualitative variable)) and their interactions was employed. The results indicated on the significant interaction of all studied factors. Temperature influenced the toxicity of Phe towards NP, and this effect was related to the Phe concentration as well as was varied for the different soils. A low content of soil organic matter (controlling bioavailability of phenanthrene to soil microorganisms) enhanced the combined effect of temperature and Phe toxicity, and a high biological activity of the soil (high NP values) increased the effect of high temperature on the Phe stimulatory influence. The results indicate that the temperature should not be neglected in tests evaluating PAH ecotoxicity, especially for reliable ecological risk assessment.


Subject(s)
Nitrogen Fixation/drug effects , Phenanthrenes/toxicity , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Temperature , Bacteria/drug effects , Biological Availability , Models, Theoretical , Phenanthrenes/analysis , Switzerland
16.
Environ Monit Assess ; 185(12): 9935-48, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23877573

ABSTRACT

The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n = 30) were collected from the upper soil layer from a 70-km(2) area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28 + PCB52 + PCB101 + PCB118 + PCB138 + PCB153 + PCB180), Σ3HCH (α-HCH + ß-HCH + γ-HCH) and Σ3pp'(DDT + DDE + DDD) were 1.60 ± 1.03, 0.22 ± 0.13 and 25.18 ± 82.70 µg kg(-1), respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50 ± 37, 38 ± 27, 29 ± 30, 45 ± 36 and 24 ± 22 µg kg(-1), respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99%), and the contribution of the parent pp' isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp'DDE/pp'DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.


Subject(s)
Environmental Monitoring , Floods , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Poland , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis
17.
Sci Total Environ ; 407(12): 3746-53, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19321189

ABSTRACT

Soils from agricultural areas receive unsatisfactory attention as regards the contamination with organic pollutants. To answer those needs the contents of the sixteen individual PAH compounds were determined (GC/MS technique) in agricultural soils in Poland. The samples (n=216) were collected from the upper layer of arable land in the year 2005. Half of the samples represented typical rural areas, while the rest derived from the territories potentially subjected to the urban/industrial pressure of various intensity. The mean (geometric) content of individual compounds varied from 1 microg kg(-1) for acenaphtylene to 55 microg kg(-1) for fluoranthene with the highest contributions (11.6%-12.9%) of phenanthrene, fluoranthene and pyrene. Higher molecular weight PAHs (4 rings) were strongly linked mutually and with the summation operator 16PAHs. They contributed substantially (73%) to the overall content of PAHs, which implies domination of anthropogenic sources. The calculated molecular indexes suggest that most of those PAHs derive from the combustion of coal, the main energy source in Poland. Simultaneously, the concentrations of lower molecular weight compounds seem to reflect the background, "natural" PAH compounds, which represent mainly atmospherically distributed emission. The division of the samples into groups describing geographical regions and landscape type enabled evaluation of the spatial trends in contamination of soils with PAH compounds. The most pronounced effect of spatial parameters corresponded to PAHs >4 rings, while lower molecular weight compounds showed more homogeneous concentration through the country.


Subject(s)
Geologic Sediments/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/analysis , Agriculture , Environmental Monitoring , Geography , Geologic Sediments/chemistry , Poland
18.
Chemosphere ; 73(8): 1284-91, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18718635

ABSTRACT

The paper provides comprehensive information on the level of contamination of arable soils in Poland with polycyclic aromatic hydrocarbons (PAHs). Extensive monitoring studies were carried out to determine the content of the 16 priority PAHs in 216 soil samples collected in 2005 throughout arable lands (0-20 cm layer) in Poland. Locations of sampling points reflected the differences in regional industrialisation and urbanisation as well as in the characteristics of soils. The content of Sigma16PAHs ranged from 80 to 7264 microg kg(-1) with a median of 395 microg kg(-1) and with a dominance of 4-6 rings hydrocarbons (74% of total PAHs). Soil properties affected the PAHs content to a limited extend. The organic matter content was the only parameter correlated significantly (although weakly) with the concentrations of Sigma16PAHs; the strength of this relationship was more pronounced in soils with elevated OM content. The various molecular markers pointed to a prevailing pyrogenic origin of the PAHs in Polish arable soils, with minor contribution from liquid fuels combustion and traffic emissions. Two different Polish systems for classification of agricultural soils (providing for the content of Sigma9PAHs and Sigma13PAHs) indicate that the percentage of contaminated arable soils in Poland does not exceed 10%. Multivariate methods enabled an evaluation of spatial trends in Sigma16PAHs concentrations, an identification of regions with very low PAHs content (East part of the country), and a recognition of small industrial/urbanised areas of higher risk.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Soil/analysis , Poland , Principal Component Analysis , Social Control, Formal
19.
Rocz Panstw Zakl Hig ; 59(1): 83-96, 2008.
Article in Polish | MEDLINE | ID: mdl-18666626

ABSTRACT

The aim of the study was to evaluate the effect of organic solvents, commonly used in ecotoxicity studies on the activity of soil microorganisms. Two solvents, often applied in the studies of the effects of hydrophobic organic contaminants in the environment, acetone and dichloromethane, were employed in the experiments. The evaluation of the effects of the solvents was based on the measurements of two parameters describing the overall activity of soil microorganisms (activity of dehydrogenases) and the activity of the specific group of nitrification bacteria (potential of nitrification). The experiments included different laboratory conditions (soil material properties, time of contact, methods of solvent amendment). The results show that the solvents introduced to soils in the amount commonly used in the ecotoxicity studies (10-20 cm3 kg(-1)) may inhibit the activity of soils microorganisms: the effect was particularly visible in the case of potential of nitrification determinations. Employment of the method of gradual application of the solvents to soils led to significant decrease of those negative effects.


Subject(s)
Acetone/analysis , Environmental Monitoring/methods , Methylene Chloride/analysis , Soil Microbiology , Soil Pollutants/analysis , Solvents/analysis , Acetone/toxicity , Humans , Methylene Chloride/toxicity , Poland , Soil Pollutants/toxicity , Solvents/toxicity
20.
Environ Geochem Health ; 30(2): 183-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18239995

ABSTRACT

The Tenax TA extraction technique followed by gas chromatography mass spectrometry (GC-MS) determinations was used to assess the actually bioavailable fraction of phenanthrene (ABF-Phe) in three different soils freshly contaminated with this compound at levels of 10, 100, and 1,000 mg kg(-1). The results were related to the ecotoxic effect of phenanthrene on soil nitrifying bacteria. Nitrification potential measurements were applied as an ecotoxicity end point. A strong positive linear relationship (r2 = 0.95) was obtained between the content of the actually bioavailable phenanthrene fraction and the inhibition of nitrifying bacteria activity.


Subject(s)
Phenanthrenes/chemistry , Polymers/chemistry , Soil Pollutants/chemistry , Bacteria/drug effects , Bacteria/metabolism , Nitrites/metabolism , Phenanthrenes/metabolism , Phenanthrenes/toxicity , Soil Microbiology , Soil Pollutants/metabolism , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...