Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 23(5): 1345-1355, 2018 05.
Article in English | MEDLINE | ID: mdl-28373690

ABSTRACT

Dietary intake of methyl donors, such as folic acid and methionine, shows considerable intra-individual variation in human populations. While it is recognized that maternal departures from the optimum of dietary methyl donor intake can increase the risk for mental health issues and neurological disorders in offspring, it has not been explored whether paternal dietary methyl donor intake influences behavioral and cognitive functions in the next generation. Here, we report that elevated paternal dietary methyl donor intake in a mouse model, transiently applied prior to mating, resulted in offspring animals (methyl donor-rich diet (MD) F1 mice) with deficits in hippocampus-dependent learning and memory, impaired hippocampal synaptic plasticity and reduced hippocampal theta oscillations. Gene expression analyses revealed altered expression of the methionine adenosyltransferase Mat2a and BK channel subunit Kcnmb2, which was associated with changes in Kcnmb2 promoter methylation in MD F1 mice. Hippocampal overexpression of Kcnmb2 in MD F1 mice ameliorated altered spatial learning and memory, supporting a role of this BK channel subunit in the MD F1 behavioral phenotype. Behavioral and gene expression changes did not extend into the F2 offspring generation. Together, our data indicate that paternal dietary factors influence cognitive and neural functions in the offspring generation.


Subject(s)
Cognition/physiology , Dietary Supplements/adverse effects , Paternal Inheritance/physiology , Animals , DNA Methylation , Diet , Epigenesis, Genetic , Fathers , Folic Acid/metabolism , Hippocampus/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits , Learning/drug effects , Male , Memory/drug effects , Methionine/metabolism , Methionine Adenosyltransferase , Methylation , Mice , Mice, Inbred C57BL , Neurons/physiology , Paternal Inheritance/genetics , Promoter Regions, Genetic
2.
Eur J Clin Nutr ; 71(3): 306-317, 2017 03.
Article in English | MEDLINE | ID: mdl-28145422

ABSTRACT

BACKGROUND/OBJECTIVES: Detailed protocols and recommendations for the assessment of energy balance have been provided to address the problems associated with different body mass and body composition as apparent for mouse models in obesity research. Here, we applied these guidelines to investigate energy balance in two inbred mouse strains with contrasting susceptibilities for diet-induced obesity (DIO). Mice of the AKR/J strain are highly susceptible, whereas the SWR/J mice are almost completely resistant. The proximate mechanisms responsible for this striking phenotypic difference are only partially understood. SUBJECTS/METHODS: Body mass and body composition, metabolizable energy, energy expenditure (EE), body temperature and spontaneous physical activity behavior were first assessed in a cohort of male AKR/J (N=29) and SWR/J (N=30) mice fed on a low-fat control diet (CD) to identify metabolic adaptations determining resistance to DIO. Thereafter, the immediate metabolic responses to high-fat diet (HFD) feeding for 3 days were investigated. Groups of weight-matched AKR/J (N=8) and SWR/J (N=8) mice were selected from the initial cohort for this intervention. RESULTS: Strain differences in body mass, fat mass and lean mass were adjusted by body mass as this was the only covariate significantly correlated with metabolizable energy and EE. On the CD, EE and fat oxidation was higher in SWR/J than in AKR/J mice, whereas no difference was found for metabolizable energy. In response to HFD feeding, both strains increased metabolizable energy intake, but also increased EE, body temperature, and fat oxidation. The catabolic adaptations to HFD feeding opposed the development of positive energy balance. Increased EE was not due to increased spontaneous physical activity. A significant strain difference was found when balancing metabolizable energy and daily energy expenditure (DEE). CONCLUSIONS: The guidelines were applicable with some limitations related to the adjustment of differences in body composition. Metabolic phenotyping revealed that metabolizable energy, DEE and metabolic fuel selection all contribute to the development of DIO. Therefore, assessing both sides of the energy balance equation is essential to identify the proximate mechanisms.


Subject(s)
Diet, High-Fat/adverse effects , Obesity/physiopathology , Animals , Body Composition , Body Mass Index , Body Weight , Calorimetry, Indirect , Dietary Fats , Energy Metabolism , Mice , Mice, Inbred AKR , Mice, Inbred Strains , Obesity/etiology , Physical Conditioning, Animal
3.
Mol Cell Endocrinol ; 443: 106-113, 2017 03 05.
Article in English | MEDLINE | ID: mdl-28088466

ABSTRACT

Under certain conditions UCP1 expressing adipocytes arise in white adipose tissue depots of both mice and humans. It is still not fully understood whether these cells differentiate de novo from specific progenitor cells or if they transdifferentiate from mature white adipocytes. Performing expression pattern analysis comparing adipocyte progenitor cells from deep and subcutaneous neck adipose tissue, we recently identified teneurin-2 (TENM2) enriched in white adipocyte progenitor cells. Here we tested whether TENM2 deficiency in adipocyte progenitor cells would lead to a brown adipocyte phenotype. By targeting TENM2 in SGBS preadipocytes using siRNA, we demonstrate that TENM2 knockdown induces both UCP1 mRNA and protein expression upon adipogenic differentiation without affecting mitochondrial mass. Furthermore, TENM2 knockdown in human SGBS adipocytes resulted in increased basal and leak mitochondrial respiration. In line with our previous observation these data suggest that TENM2 deficiency in human adipocyte precursors leads to induction of brown adipocyte marker genes upon adipogenic differentiation.


Subject(s)
Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Cell Differentiation/genetics , Membrane Proteins/deficiency , Nerve Tissue Proteins/deficiency , Uncoupling Protein 1/genetics , Adipocytes, White/cytology , Adipocytes, White/metabolism , Adipogenesis/genetics , Adipose Tissue, White/cytology , Arrhythmias, Cardiac/pathology , Biomarkers/metabolism , Cell Respiration/genetics , Gene Knockdown Techniques , Genetic Diseases, X-Linked/pathology , Gigantism/pathology , Heart Defects, Congenital/pathology , Humans , Intellectual Disability/pathology , Membrane Proteins/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , RNA, Small Interfering/metabolism , Stem Cells/metabolism , Uncoupling Protein 1/metabolism
4.
Mamm Genome ; 26(1-2): 33-42, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25308000

ABSTRACT

Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a hyperactive phenotype is consistent with separate findings in which DUF1220 over expression results in a down-regulation of mitochondrial function, and potentially suggests a role in developmental metabolism. Finally, the substantially reduced fecundity we observe associated with KO mice argues that the ancestral DUF1220 domain provides an important biological functionthat is critical to survivability and reproductive success.


Subject(s)
Biological Evolution , Brain/growth & development , Fertility/genetics , Gene Dosage , Mice, Transgenic/genetics , Phenotype , Animals , Area Under Curve , Blood Glucose/metabolism , Calorimetry, Indirect , DNA Primers/genetics , Gene Expression Profiling , Gene Knockout Techniques , Hyperkinesis/genetics , Liver/metabolism , Male , Mice , Organ Size , Protein Structure, Tertiary
5.
Mol Cell Endocrinol ; 395(1-2): 41-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25102227

ABSTRACT

Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipogenesis/physiology , Gene Expression Regulation/physiology , Stem Cells/metabolism , Subcutaneous Fat/metabolism , Adipocytes, Brown/cytology , Adipocytes, White/cytology , Adult , Aged , Female , Humans , Male , Middle Aged , Neck , Oligonucleotide Array Sequence Analysis , Organ Specificity , Stem Cells/cytology , Subcutaneous Fat/cytology
6.
J Breath Res ; 8(1): 016004, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24566092

ABSTRACT

Breath gas analysis in humans proved successful in identifying disease states and assessing metabolic functions in a non-invasive way. While many studies report diagnostic capability using volatile organic compounds (VOC) in breath, the inter-individual variability even in healthy human cohorts is rather large and not completely understood in its biochemical origin. Laboratory mice are the predominant animal model system for human disorders and are analysed under highly standardized and controlled conditions. We established a novel setup to monitor VOCs as biomarkers for disease in the breath gas of non-anesthetized, non-restrained mice using a proton transfer reaction mass spectrometer with time of flight detection. In this study, we implemented breath gas analysis in a dietary intervention study in C57BL/6J mice with the aim to assess the variability in VOC signatures due to a change in the diet matrix. Mice were fed a standard laboratory chow and then exposed to four semi-purified low- or high-fat diets for four weeks. Random forest (RF++) was used to identify VOCs that specifically respond to the diet matrix change. Interestingly, we found that the change from a chow diet to semi-purified diets resulted in a considerable drop of several VOC levels. Our results suggest that the diet matrix impacts VOC signatures and the underlying metabolic functions and may be one source of variability in exhaled volatiles.


Subject(s)
Breath Tests/methods , Diet , Volatile Organic Compounds/analysis , Acetates/analysis , Animals , Biomarkers/analysis , Computer Systems , Dimethyl Sulfoxide/analysis , Exhalation/physiology , Feeding Behavior , Humans , Linear Models , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Obese , Propionates/analysis , Sulfones/analysis , Weight Gain
7.
Biochim Biophys Acta ; 1842(2): 304-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24275555

ABSTRACT

Vulnerability of the fetus upon maternal obesity can potentially occur during all developmental phases. We aimed at elaborating longer-term health outcomes of fetal overnutrition during the earliest stages of development. We utilized Naval Medical Research Institute (NMRI) mice to induce pre-conceptional and gestational obesity and followed offspring outcomes in the absence of any postnatal obesogenic influences. Male adult offspring developed overweight, insulin resistance, hyperleptinemia, hyperuricemia and hepatic steatosis; all these features were not observed in females. Instead, they showed impaired fasting glucose and a reduced fat mass and adipocyte size. Influences of the interaction of maternal diet∗sex concerned offspring genes involved in fatty liver disease, lipid droplet size regulation and fat mass expansion. These data suggest that a peri-conceptional obesogenic exposure is sufficient to shape offspring gene expression patterns and health outcomes in a sex- and organ-specific manner, indicating varying developmental vulnerabilities between sexes towards metabolic disease in response to maternal overnutrition.


Subject(s)
Diet, High-Fat/adverse effects , Disease Susceptibility/physiopathology , Obesity/physiopathology , Adipocytes/metabolism , Adipocytes/pathology , Animals , Body Weight/physiology , Cell Size , Disease Susceptibility/etiology , Fatty Liver/etiology , Fatty Liver/physiopathology , Female , Gene Expression Regulation, Developmental , Glucose Tolerance Test , Hyperuricemia/etiology , Hyperuricemia/physiopathology , Insulin Resistance/physiology , Leptin/blood , Male , Mice, Inbred Strains , Obesity/etiology , Obesity/genetics , Overweight/etiology , Overweight/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/physiopathology , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Subcutaneous Fat/metabolism , Time Factors
8.
Anal Biochem ; 443(2): 197-204, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24055619

ABSTRACT

We report on the development of a novel assay protocol for the separation and detection of charge isoforms of DJ-1 in biological samples by automated capillary isoelectric focusing followed by immunological detection. DJ-1 (PARK7) is considered as a biomarker candidate for Parkinson's disease and may potentially support the differentiation of clinical subtypes of the disease. The new method allows for separation and subsequent relative quantitative comparison of different isoforms of DJ-1 in biological samples. The assay was successfully applied to the analysis of DJ-1 isoform patterns in brains from mice subjected to normal or high-fat diet and revealed statistically significant group differences. Furthermore, in a pooled and concentrated sample of human cerebrospinal fluid that was depleted of albumin and immunoglobulin G, four different charge variants of DJ-1 could be detected. Taken together, the capillary isoelectric focusing immunoassay for DJ-1 represents a promising tool that may ultimately serve in clinical biomarker studies.


Subject(s)
Brain Chemistry , Intracellular Signaling Peptides and Proteins/cerebrospinal fluid , Isoelectric Focusing/methods , Oncogene Proteins/analysis , Oncogene Proteins/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Animals , Blotting, Western , Brain/metabolism , Diet, High-Fat , Humans , Immunoassay/methods , Male , Mice , Mice, Inbred C57BL , Oncogene Proteins/metabolism , Peroxiredoxins , Protein Deglycase DJ-1 , Protein Isoforms/analysis , Protein Isoforms/cerebrospinal fluid
9.
Endocrinology ; 154(9): 3141-51, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23751871

ABSTRACT

Variants in the fat mass- and obesity-associated (FTO) gene are associated with obesity and body fat mass in genome-wide association studies. However, the mechanism by which FTO predisposes individuals to obesity is not clear so far. First mechanistic evidence was shown in Fto-negative mice. These mice are resistant to obesity due to enhanced energy expenditure, whereas the mass of brown adipose tissue remains unchanged. We hypothesize that FTO is involved in the induction of white adipose tissue browning, which leads to mitochondrial uncoupling and increases energy expenditure. Uncoupling protein 1 (Ucp-1) was significantly higher expressed in both gonadal and inguinal adipose depots of Fto(-/-) compared with Fto(+/+) littermates accompanied by the appearance of multivacuolar, Ucp-1-positive adipocytes in these tissues. By using lentiviral short hairpin RNA constructs, we established FTO-deficient human preadipocytes and adipocytes and analyzed key metabolic processes. FTO-deficient adipocytes showed an adipogenic differentiation rate comparable with control cells but exhibited a reduced de novo lipogenesis despite unchanged glucose uptake. In agreement with the mouse data, FTO-deficient adipocytes exhibited 4-fold higher expression of UCP-1 in mitochondria compared with control cells. The up-regulation of UCP-1 in FTO-deficient adipocytes resulted in enhanced mitochondrial uncoupling. We conclude that FTO deficiency leads to the induction of a brown adipocyte phenotype, thereby enhancing energy expenditure. Further understanding of the signaling pathway connecting FTO with UCP-1 expression might lead to new options for obesity and overweight treatment.


Subject(s)
Adipose Tissue, White/metabolism , Energy Metabolism , Ion Channels/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteins/metabolism , Up-Regulation , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/cytology , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Biomarkers/metabolism , Cells, Cultured , Female , Humans , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/metabolism , Ion Channels/biosynthesis , Ion Channels/genetics , Male , Mice , Mice, Knockout , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Proteins/antagonists & inhibitors , Proteins/genetics , RNA Interference , RNA, Small Interfering , Subcutaneous Fat/cytology , Subcutaneous Fat/metabolism , Subcutaneous Fat, Abdominal/cytology , Subcutaneous Fat, Abdominal/metabolism , Uncoupling Protein 1 , Vacuoles/metabolism
10.
Biochim Biophys Acta ; 1831(5): 960-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23376694

ABSTRACT

During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.


Subject(s)
Adipocytes/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Animals, Newborn , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Body Composition , Body Mass Index , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Female , Immunoenzyme Techniques , Ion Channels/genetics , Ion Channels/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Uncoupling Protein 1
11.
J Neuroendocrinol ; 25(2): 190-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22967033

ABSTRACT

The production of bioactive peptides from biologically inactive precursors involves extensive post-translational processing, including enzymatic cleavage by proteolytic peptidases. Endoproteolytic prohormone-convertases initially cleave the precursors of many neuropeptides at specific amino acid sequences to generate intermediates with basic amino acid extensions on their C-termini. Subsequently, the related exopeptidases, carboxypeptidases D and E (CPD and CPE), are responsible for removing these amino acids before the peptides achieve biological activity. We investigated the effect of photoperiod on the processing of the neuropeptide precursor pro-opiomelanocortin (POMC) and its derived neuropeptides, α-melanocyte-stimulating hormone (MSH) and ß-endorphin (END), within the hypothalamus of the seasonal Siberian hamster (Phodopus sungorus). We thus compared hypothalamic distribution of CPD, CPE, α-MSH and ß-END using immunohistochemistry and measured the enzyme activity of CPE and concentrations of C-terminally cleaved α-MSH in short-day (SD; 8 : 16 h light/dark) and long-day (LD; 16 : 8 h light/dark) acclimatised hamsters. Increased immunoreactivity (-IR) of CPE, as well as higher CPE activity, was observed in SD. This increase was accompanied by more ß-END-IR cells and substantially higher levels of C- terminally cleaved α-MSH, as determined by radioimmunoassay. Our results suggest that exoproteolytic cleavage of POMC-derived neuropeptides is tightly regulated by photoperiod in the Siberian hamster. Higher levels of biological active α-MSH- and ß-END in SD are consistent with the hypothesis that post-translational processing is a key event in the regulation of seasonal energy balance.


Subject(s)
Carboxypeptidase H/metabolism , Neuropeptides/metabolism , Phodopus/physiology , Photoperiod , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight/physiology , Cricetinae , Male , Phodopus/metabolism , Pro-Opiomelanocortin/metabolism , Protein Processing, Post-Translational , Seasons , Substrate Specificity , alpha-MSH/metabolism , beta-Endorphin/metabolism
12.
Pharmacogenomics J ; 13(1): 80-93, 2013 Feb.
Article in English | MEDLINE | ID: mdl-21969101

ABSTRACT

Several genetic diseases are triggered by nonsense mutations leading to the formation of truncated and defective proteins. Aminoglycosides have the capability to mediate a bypass of stop mutations during translation thus resulting in a rescue of protein expression. So far no attention has been directed to obesity-associated stop mutations as targets for nonsense suppression. Herein, we focus on the characterization of the melanocortin-4-receptor (MC4R) nonsense allele W16X identified in obese subjects. Cell culture assays revealed a loss-of-function of Mc4r(X16) characterized by impaired surface expression and defect signaling. The aminoglycoside G-418 restored Mc4r(X16) function in vitro demonstrating that Mc4r(X16) is susceptible to nonsense suppression. For the evaluation of nonsense suppression in vivo, we generated a Mc4r(X16) knock-in mouse line by gene targeting. Mc4r(X16) knock-in mice developed hyperphagia, impaired glucose tolerance, severe obesity and an increased body length demonstrating that this new mouse model resembles typical characteristics of Mc4r deficiency. In a first therapeutic trial, the aminoglycosides gentamicin and amikacin induced no amelioration of obesity. Further experiments with Mc4r(X16) knock-in mice will be instrumental to establish nonsense suppression for Mc4r as an obesity-associated target gene expressed in the central nervous system.


Subject(s)
Codon, Nonsense , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Aminoglycosides/genetics , Aminoglycosides/metabolism , Animals , Body Composition/genetics , Body Temperature/genetics , Body Weight/genetics , COS Cells , Cell Line , Chlorocebus aethiops , Energy Intake/genetics , Gene Expression/genetics , HEK293 Cells , Humans , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism
13.
Proc Biol Sci ; 279(1726): 185-93, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-21632624

ABSTRACT

Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.


Subject(s)
Basal Metabolism , Marsupialia/metabolism , Mesocricetus/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Protons , Animals , Body Weight , Cell Respiration , Cricetinae , Electrodes , Liver/metabolism , Muscle, Skeletal/metabolism , Onium Compounds/chemistry , Oxygen/chemistry , Phylogeny , Queensland , Regression Analysis , Species Specificity , Trityl Compounds/chemistry
14.
Genes Nutr ; 4(2): 129-34, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19266227

ABSTRACT

Obesity is characterized by an excess storage of body fat and promotes the risk for complex disease traits such as diabetes mellitus and cardiovascular diseases. The obesity prevalence in Europe is rising and meanwhile ranges from 10 to 20% in men and 15-25% in women. Body fat accumulation occurs in states of positive energy balance and is favored by interactions among environmental, psychosocial and genetic factors. Energy balance is regulated by a complex neuronal network of anorexigenic and orexigenic neurons which integrates peripheral and central hormonal and neuronal signals relaying information on the metabolic status of organs and tissues in the body. A key component of this network is the central melanocortin pathway in the hypothalamus that elicits metabolic and behavioral adaptations for the maintenance of energy homeostasis. Genetic defects in this system cause obesity in mice and humans. In this review we emphasize mouse models with spontaneous natural mutations as well as targeted mutations that contributed to our understanding of the central melanocortin system function in the control of energy balance.

15.
Proc Natl Acad Sci U S A ; 106(9): 3354-9, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19208810

ABSTRACT

Obesity is associated with increased risk for developing pancreatic cancer, and it is suggested that insulin resistance provides the missing link. Here we demonstrate that under the context of genetic susceptibility, a high fat diet (HFD) predisposes mice with oncogenic K-ras activation to accelerated pancreatic intraepithelial neoplasm (PanIN) development. Tumor promotion is closely associated with increased inflammation and abrogation of TNFR1 signaling significantly blocks this process underlining a central role for TNFalpha in obesity-mediated enhancement of PanIN lesions. Interestingly, however, despite increased TNFalpha levels, mice remain insulin sensitive. We show that, while aggravating tumor promotion, a HFD exerts dramatic changes in energy metabolism through enhancement of pancreatic exocrine insufficiency, metabolic rates, and expression of genes involved in mitochondrial fatty acid (FA) beta-oxidation that collectively contribute to improved glucose tolerance in these mice. While on one hand these findings provide significant evidence that obesity is linked to tumor promotion in the pancreas, on the other it suggests alterations in inflammatory responses and bioenergetic pathways as the potential underlying cause.


Subject(s)
Fatty Acids/metabolism , Mitochondria/metabolism , Obesity/metabolism , Pancreatic Neoplasms/metabolism , Animal Feed , Animals , Disease Progression , Exocrine Pancreatic Insufficiency/chemically induced , Exocrine Pancreatic Insufficiency/metabolism , Exocrine Pancreatic Insufficiency/pathology , Fatty Acids/pharmacology , Inflammation/genetics , Inflammation/metabolism , Insulin Resistance , Mice , Mitochondria/drug effects , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Time Factors , ras Proteins/metabolism
16.
J Exp Biol ; 211(Pt 12): 1911-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18515721

ABSTRACT

Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10 degrees C or 30 degrees C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25 degrees C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.


Subject(s)
Acclimatization/physiology , Bufo marinus/physiology , Cold Temperature , Energy Metabolism/physiology , Fasting/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Adenine Nucleotide Translocator 1/metabolism , Analysis of Variance , Animals , Blotting, Northern , Bufo marinus/genetics , Bufo marinus/metabolism , Computational Biology/methods , Genomics/methods , Ion Channels/genetics , Ion Channels/metabolism , Liver/metabolism , Male , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Uncoupling Protein 1 , Xenopus/genetics
17.
Physiol Genomics ; 32(2): 161-9, 2008 Jan 17.
Article in English | MEDLINE | ID: mdl-17971503

ABSTRACT

Brown adipose tissue expressing uncoupling protein 1 (UCP1) is responsible for adaptive nonshivering thermogenesis giving eutherian mammals crucial advantage to survive the cold. The emergence of this thermogenic organ during mammalian evolution remained unknown as the identification of UCP1 in marsupials failed so far. Here, we unequivocally identify the marsupial UCP1 ortholog in a genomic library of Monodelphis domestica. In South American and Australian marsupials, UCP1 is exclusively expressed in distinct adipose tissue sites and appears to be recruited by cold exposure in the smallest species under investigation (Sminthopsis crassicaudata). Our data suggest that an archetypal brown adipose tissue was present at least 150 million yr ago allowing early mammals to produce endogenous heat in the cold, without dependence on shivering and locomotor activity.


Subject(s)
Evolution, Molecular , Ion Channels/genetics , Marsupialia/genetics , Mitochondrial Proteins/genetics , Thermogenesis/genetics , Animals , Blotting, Northern , Cold Temperature , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Mammals/classification , Mammals/genetics , Marsupialia/embryology , Marsupialia/growth & development , Molecular Sequence Data , Opossums/genetics , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Shivering , Uncoupling Protein 1 , Uncoupling Protein 2 , Uncoupling Protein 3
18.
J Comp Physiol B ; 178(2): 167-77, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17912534

ABSTRACT

3-Iodothyronamine is considered as a derivate of thyroid hormone as a result of enzymatic deiodination and decarboxylation. The physiological role of thyronamine (T1AM) is not known. The aim of this study was to analyze the metabolic response to T1AM in the Djungarian hamster Phodopus sungorus. We measured the influence of T1AM (50 mg/kg) on metabolic rate (VO(2)), body temperature (T (b)) and respiratory quotient (RQ) in this species and in BL/6 mice. T1AM treated hamsters as well as the mice showed a rapid decrease in VO(2) and T (b), accompanied by a reduction of RQ from normal values of about approximately 0.9 to approximately 0.70 for several hours. This indicates that carbohydrate utilisation is blocked by the injection of T1AM and that metabolic pathways are rerouted from carbohydrate to lipid utilisation in response to T1AM. This assumption was further supported by the observation that the treatment of T1AM caused ketonuria and a significant loss of body fat. Our results indicate that T1AM has the potential to control the balance between glucose and lipid utilisation in vivo.


Subject(s)
Blood Glucose/metabolism , Lipid Metabolism/physiology , Mice, Inbred C57BL/metabolism , Phodopus/metabolism , Thyronines/metabolism , Animals , Basal Metabolism/drug effects , Basal Metabolism/physiology , Body Composition/drug effects , Body Composition/physiology , Body Temperature/drug effects , Body Temperature/physiology , Cricetinae , Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Ketones/urine , Male , Mice , Photoperiod , Seasons , Species Specificity , Thyronines/pharmacology
19.
Gen Comp Endocrinol ; 150(1): 140-50, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-16945369

ABSTRACT

Transition from previtellogeneic to vitellogenic oocyte growth is a critical phase for folliculogenesis in sturgeon and may often be postponed for several years. Recent findings on the involvement of insulin-like growth factor I (IGF-I) in cell differentiation processes of oocyte follicle and ovarian steroidogenesis of teleosts in vitro led to the hypothesis that paracrine IGF-I could function as a potential trigger in vivo. For the first time, IGF-I and its corresponding receptor (IGF-IR) were identified in a non-teleostean fish. Real-time PCR assays for IGF-I and IGF-IR mRNA were established, normalising mRNA expression of the target genes to beta-microglobulin (beta2m). We clearly show that expression of IGF-I in the gonad is a substantial source for IGF-I-mediated effects in follicles compared to liver, brain, muscle and adipose tissue. Among these tissues, IGF-IR mRNA was highest in the gonad. With regard to different cohorts of coexisting follicles, highest expression of IGF-I and IGF-IR were met in developing follicles, indicating that IGF-I functions as an intraovarian modulator of follicle faith. Comparing previtellogenic follicles in females that matured within two years with non-maturing females f the same age, revealed an increases of 2.3-fold for IGF-I and 2.8-fold for IGF-IR mRNA expression in maturing females. These findings implicate an important role of paracrine IGF-I in early vitellogenesis and identify it as candidate vitellogenesis inducing factor (VIF), determining the faith of the follicle.


Subject(s)
Fishes/physiology , Insulin-Like Growth Factor I/physiology , Sexual Maturation/physiology , Vitellogenesis/physiology , Animals , Base Sequence , Female , Fishes/genetics , Gene Expression Regulation , Insulin-Like Growth Factor I/genetics , Molecular Sequence Data , Ovulation/physiology , RNA, Messenger/analysis , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Sequence Homology , Species Specificity
20.
J Neuroendocrinol ; 18(6): 413-25, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16684131

ABSTRACT

A remarkable feature of the seasonal adaptation displayed by the Siberian hamster (Phodopus sungorus) is the ability to decrease food intake and body weight (by up to 40%) in response to shortening photoperiod. The regulating neuroendocrine systems involved in this adaptation and their neuroanatomical and molecular bases are poorly understood. We investigated the effect of photoperiod on the expression of prohormone convertases 1 (PC1/3) and 2 (PC2) and the endoproteolytic processing of the neuropeptide precursor pro-opiomelanocortin (POMC) within key energy balance regulating centres of the hypothalamus. We compared mRNA levels and protein distribution of PC1/3, PC2, POMC, adrenocorticotrophic hormone (ACTH), alpha-melanocyte-stimulating hormone (MSH), beta-endorphin and orexin-A in selected hypothalamic areas of long day (LD, 16:8 h light:dark), short day (SD, 8:16 h light:dark) and natural-day (ND, photoperiod depending on time of the year) acclimated Siberian hamsters. The gene expression of PC2 was significantly higher within the arcuate nucleus (ARC, P < 0.01) in SD and in ND (versus LD), and is reflected in the day length profile between October and April in the latter. PC1/3 gene expression in the ARC and lateral hypothalamus was higher in ND but not in SD compared to the respective LD controls. The immunoreactivity of PC1/3 cleaved neuropeptide ACTH in the ARC and PC1/3-colocalised orexin-A in the lateral hypothalamus were not affected by photoperiod changes. However, increased levels of PC2 mRNA and protein were associated with higher abundance of the mature neuropeptides alpha-MSH and beta-endorphin (P < 0.01) in SD. This study provides a possible explanation for previous paradoxical findings showing lower food intake in SD associated with decreased POMC mRNA levels. Our results suggest that a major part of neuroendocrine body weight control in seasonal adaptation may be effected by post-translational processing mediated by the prohormone convertases PC1/3 and PC2, in addition to regulation of gene expression of neuropeptide precursors.


Subject(s)
Adaptation, Physiological/genetics , Photoperiod , Pro-Opiomelanocortin/genetics , Proprotein Convertase 1/genetics , Proprotein Convertase 2/genetics , Adrenocorticotropic Hormone/metabolism , Animals , Body Weight/physiology , Cricetinae , Female , Gene Expression Regulation, Enzymologic/physiology , Hypothalamic Area, Lateral/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Neuropeptides/genetics , Neuropeptides/metabolism , Orexins , Phodopus , Pro-Opiomelanocortin/metabolism , Proprotein Convertase 1/metabolism , Proprotein Convertase 2/metabolism , Protein Precursors/genetics , Protein Processing, Post-Translational/physiology , RNA, Messenger/analysis , Seasons , alpha-MSH/metabolism , beta-Endorphin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...