Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Proteome Res ; 20(2): 1252-1260, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33356304

ABSTRACT

Early and correct diagnosis of inflammatory rheumatic diseases (IRD) poses a clinical challenge due to the multifaceted nature of symptoms, which also may change over time. The aim of this study was to perform protein expression profiling of four systemic IRDs, systemic lupus erythematosus (SLE), ANCA-associated systemic vasculitis (SV), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), and healthy controls to identify candidate biomarker signatures for differential classification. A total of 316 serum samples collected from patients with SLE, RA, SS, or SV and from healthy controls were analyzed using 394-plex recombinant antibody microarrays. Differential protein expression profiling was examined using Wilcoxon signed rank test, and condensed biomarker panels were identified using advanced bioinformatics and state-of-the art classification algorithms to pinpoint signatures reflecting each disease (raw data set available at https://figshare.com/s/3bd3848a28ef6e7ae9a9.). In this study, we were able to classify the included individual IRDs with high accuracy, as demonstrated by the ROC area under the curve (ROC AUC) values ranging between 0.96 and 0.80. In addition, the groups of IRDs could be separated from healthy controls at an ROC AUC value of 0.94. Disease-specific candidate biomarker signatures and general autoimmune signature were identified, including several deregulated analytes. This study supports the rationale of using multiplexed affinity-based technologies to reflect the biological complexity of autoimmune diseases. A multiplexed approach for decoding multifactorial complex diseases, such as autoimmune diseases, will play a significant role for future diagnostic purposes, essential to prevent severe organ- and tissue-related damage.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Arthritis, Rheumatoid , Autoimmune Diseases , Lupus Erythematosus, Systemic , Sjogren's Syndrome , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Autoimmune Diseases/diagnosis , Data Analysis , Humans , Lupus Erythematosus, Systemic/diagnosis , Proteomics , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics
2.
J Exp Orthop ; 6(1): 19, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053993

ABSTRACT

BACKGROUND: An early detection of Osteoarthritis is urgently needed and still not possible until today. The aim of the study was to assess whether molecular biomarkers of cartilage turnover are associated with longitudinal change in knee cartilage thickness during a 2 year period in individuals with increased risk of developing knee osteoarthritis. A secondary aim was to assess whether prior knee injury or subjective patient-reported outcomes at baseline (BL) were associated with articular cartilage changes. Nineteen volleyball players (mean age 46.5 ± 4.9 years, 47% male) with a 30-year history of regular high impact training were recruited. The serum biomarkers Cpropeptide of type II procollagen (CPII), cartilage oligomeric matrix protein (COMP), collagenase generated carboxy-terminal neoepitope of type II collagen (sC2C), cartilage intermediate layer protein 2 (CILP-2), and the urine biomarkers C-telopeptide of type II collagen (CTX-II) and collagenase-generated peptide(s) of type II collagen (C2C-HUSA) were assessed at BL and at 2 year follow up (FU). Femorotibial cartilage thinning, thickening and absolute thickness change between BL and FU was evaluated from magnetic resonance imaging. Subjective clinical status at BL was evaluated by the International Knee Documentation Committee Subjective Knee Form and the Short-Form 36 Physical Component Score. RESULTS: CILP-2 was significantly higher at FU and linearly associated with the absolute cartilage thickness change during the experimental period. Prior injury was a predictor of increased absolute cartilage thickness change. CONCLUSION: Measuring the change in the cartilage biomarker CILP-2 might be a valid and sensitive method to detect early development of knee osteoarthritis as CILP-2 appears to be related to cartilage thickness loss in certain individuals with increased risk of developing knee osteoarthritis. Prior knee injury may be predictive of increased articular cartilage thickness change.

3.
J Exp Orthop ; 4(1): 7, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28229430

ABSTRACT

BACKGROUND: This study aimed the feasibility to assess longitudinal changes in biomarkers of cartilage turnover and to determine their relationship with patient-rated outcomes over 2 years in volleyball athletes. METHODS: Thirty-seven athletes were studied: 18 adolescents (age 15.9 ± 0.64 years) in a 2-year intensive volleyball training program and 19 adult recreational volleyball players (age 46.5 ± 4.9 years). Blood and serum samples were taken at baseline (BL) and 2-year follow-up (FU). Subjects completed the International Knee Documentation Committee (IKDC) Subjective Knee Form and the Short-Form 36 (SF-36) at BL. RESULTS: Thirteen adolescents (72%) had open growth plates at BL (BL open adolescents), the rest had closed growth plates at BL (BL closed adolescents), and all but one adolescent had closed growth plates at FU as assessed by MRI. BL open and closed adolescents had greater levels of the cartilage degradation-based biomarkers 45 mer collagenase peptide of type II collagen (C2C-HUSA) and C-telopeptide of type II collagen (CTX-II) than adults. BL open adolescents showed decreases in C2CHUSA, collagen synthesis marker C-propeptide of type II procollagen (CPII), and CTXII, and adults showed increases in cartilage intermediate layer protein 2 (CILP-2) and C2C-HUSA. In adolescents, IKDC scores were correlated with CPII changes. In adults, SF-36 Physical Component Scores were correlated with cartilage oligomeric matrix protein (COMP) changes. CONCLUSION: Significant differences in biomarker levels over time show the feasibility to assess their changes. Greater levels of C2C-HUSA and CTX-II in adolescents than in adults may reflect increased cartilage turnover in response to higher joint loading. CPII and COMP may be more reflective of subjective patient outcomes. These biomarkers may thus be useful in assessing mechanical loading-induced cartilage changes, their associated symptoms, and Osteoarthritis risk in athletes.

4.
J Inflamm (Lond) ; 13: 20, 2016.
Article in English | MEDLINE | ID: mdl-27340371

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic eczematous lesions that are commonly treated with topical corticosteroids and calcineurin inhibitors. Side-effects and safety concerns associated with these agents restrict their use, and new, safe treatment options are therefore needed. Recent reports suggest that serotonin, i.e. 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor family may contribute to inflammation and pruritus in the skin. The objective of this particular study was to investigate the 5HT2B receptor antagonist AM1030 with respect to its anti-inflammatory profile and potential. METHODS: AM1030 was tested in a set of distinct human and rodent in vitro and in vivo models, differing with respect to e.g. T cell involvement, triggering stimulus, main read-outs and route of drug administration. The in vitro systems used were staphylococcal enterotoxin A (SEA)-stimulated human peripheral blood mononuclear cells, lipopolysaccharide (LPS)-stimulated human primary monocytes, LPS-stimulated human THP-1 monocytes and LPS-stimulated mouse primary macrophages. The in vivo systems used were LPS- and SEA-induced cytokine production in the mouse, antigen-induced arthritis in the rat, glucose-6-phosphate isomerase-induced arthritis in the mouse and delayed-type hypersensitivity reaction in the mouse. In addition, different cell populations were analyzed with respect to their expression of the 5-HT2B receptor at the mRNA level. RESULTS: AM1030 significantly reduced both T cell-dependent and T cell-independent inflammatory responses, in vivo and in vitro. Due to the low or absent expression of the 5-HT2B receptor on T cell populations, the influence of AM1030 in T cell-dependent systems is suggested to be mediated via an indirect effect involving antigen-presenting cell types, such as monocytes and macrophages. CONCLUSION: Based on the wide range of model systems used in this study, differing e.g. with respect to species, T cell involvement, triggering stimuli, route of drug administration and read-outs, our results suggest a broad anti-inflammatory effect of AM1030 and identify the 5-HT2B receptor as a promising future target for anti-inflammatory intervention, e.g. in AD.

5.
PLoS One ; 10(4): e0125109, 2015.
Article in English | MEDLINE | ID: mdl-25897671

ABSTRACT

Serotonin, a highly pro-inflammatory molecule released by activated platelets, is formed by tryptophan. Tryptophan is also needed in the production of kynurenine, a process mediated by the type I interferon (IFN)-regulated rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO). The aim of this study was to investigate levels of serotonin in patients with the autoimmune disease systemic lupus erythematosus (SLE), association to clinical phenotype and possible involvement of IDO in regulation of serotonin synthesis. Serotonin levels were measured in serum and plasma from patients with SLE (n=148) and healthy volunteers (n=79) by liquid chromatography and ELISA, as well as intracellularly in platelets by flow cytometry. We found that SLE patients had decreased serotonin levels in serum (p=0.01) and platelets (p<0.0001) as compared to healthy individuals. SLE patients with ongoing type I IFN activity, as determined by an in-house reporter assay, had decreased serum levels of serotonin (p=0.0008) as well as increased IDO activity (p<0.0001), as determined by the kynurenine/tryptophan ratio measured by liquid chromatography. Furthermore, SLE sera induced IDO expression in WISH cells in a type I IFN-dependent manner (p=0.008). Also platelet activation contributed to reduce overall availability of serotonin levels in platelets and serum (p<0.05). Decreased serum serotonin levels were associated with severe SLE with presence of anti-dsDNA antibodies and nephritis. In all, reduced serum serotonin levels in SLE patients were related to severe disease phenotype, including nephritis, suggesting involvement of important immunopathological processes. Further, our data suggest that type I IFNs, present in SLE sera, are able to up-regulate IDO expression, which may lead to decreased serum serotonin levels.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Interferon Type I/blood , Kidney/metabolism , Lupus Erythematosus, Systemic/blood , Serotonin/biosynthesis , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/blood , Blood Platelets/immunology , Blood Platelets/metabolism , Blood Platelets/pathology , Case-Control Studies , Female , Humans , Kidney/immunology , Kidney/pathology , Kynurenine/blood , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Male , Middle Aged , Phenotype , Serotonin/blood , Severity of Illness Index , Tryptophan/blood
6.
PLoS One ; 5(6): e11193, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20567594

ABSTRACT

BACKGROUND: Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue-dependent manner, where the predominant 84 kDa form in adipocytes is the most extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed negative stain electron microscopy (EM) to analyze the quarternary structure of the different HSL isoforms. The results show that all three isoforms adopt a head-to-head homodimeric organization, where each monomer contains two structural domains. We also used enzymatic assays to show that despite the variation in the size of the N-terminal domain all three isoforms exhibit similar enzymological properties with regard to psychrotolerance and protein kinase A (PKA)-mediated phosphorylation and activation. CONCLUSIONS/SIGNIFICANCE: We present the first data on the quaternary structure and domain organization of the three HSL isoforms. We conclude that despite large differences in the size of the N-terminal, non-catalytic domain all three HSL isoforms exhibit the same three-dimensional architecture. Furthermore, the three HSL isoforms are very similar with regard to two unique enzymological characteristics of HSL, i.e., cold adaptation and PKA-mediated activation.


Subject(s)
Isoenzymes/metabolism , Sterol Esterase/metabolism , Base Sequence , Blotting, Western , Cold Temperature , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Primers , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Isoenzymes/chemistry , Microscopy, Electron, Transmission , Phosphorylation , Polymerase Chain Reaction , Protein Structure, Quaternary , Sterol Esterase/chemistry
7.
Endocrinology ; 150(7): 3049-57, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19299455

ABSTRACT

Lipids have been shown to play a dual role in pancreatic beta-cells: a lipid-derived signal appears to be necessary for glucose-stimulated insulin secretion, whereas lipid accumulation causes impaired insulin secretion and apoptosis. The ability of the protein perilipin to regulate lipolysis prompted an investigation of the presence of perilipin in the islets of Langerhans. In this study evidence is presented for perilipin expression in rat, mouse, and human islets of Langerhans as well as the rat clonal beta-cell line INS-1. In rat and mouse islets, perilipin was verified to be present in beta-cells. To examine whether the development of lipotoxicity could be prevented by manipulating the conditions for lipid storage in the beta-cell, INS-1 cells with adenoviral-mediated overexpression of perilipin were exposed to lipotoxic conditions for 72 h. In cells exposed to palmitate, perilipin overexpression caused increased accumulation of triacylglycerols and decreased lipolysis compared with control cells. Whereas glucose-stimulated insulin secretion was retained after palmitate exposure in cells overexpressing perilipin, it was completely abolished in control beta-cells. Thus, overexpression of perilipin appears to confer protection against the development of beta-cell dysfunction after prolonged exposure to palmitate by promoting lipid storage and limiting lipolysis.


Subject(s)
Insulin-Secreting Cells/metabolism , Phosphoproteins/metabolism , Adult , Aged , Animals , Carrier Proteins , Cell Line , Female , Humans , Lipolysis/drug effects , Male , Mice , Middle Aged , Palmitates/pharmacology , Perilipin-1 , Rats , Rats, Wistar
8.
Am J Physiol Endocrinol Metab ; 295(1): E179-86, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18492774

ABSTRACT

For the working muscle there are a number of fuels available for oxidative metabolism, including glycogen, glucose, and nonesterified fatty acids. Nonesterified fatty acids originate from lipolysis in white adipose tissue, hydrolysis of VLDL triglycerides, or hydrolysis of intramyocellular triglyceride stores. A key enzyme in the mobilization of fatty acids from intracellular lipid stores is hormone-sensitive lipase (HSL). The aim of the present study was to investigate the metabolic response of HSL-null mice challenged with exercise or fasting and to examine whether other lipases are able to fully compensate for the lack of HSL. The results showed that HSL-null mice have reduced capacity to perform aerobic exercise. The liver glycogen stores were more rapidly depleted in HSL-null mice during treadmill exercise, and HSL-null mice had reduced plasma concentrations of both glycerol and nonesterified fatty acids after exercise and fasting, respectively. The data support the hypothesis that in the absence of HSL, mice are not able to respond to an exercise challenge with increased mobilization of the lipid stores. Consequently, the impact of the lipid-sparing effect on liver glycogen is reduced in the HSL-null mice, resulting in faster depletion of this energy source, contributing to the decreased endurance during submaximal exercise.


Subject(s)
Lipid Metabolism/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Sterol Esterase/metabolism , Animals , Blood Glucose/metabolism , Epinephrine/blood , Fatty Acids, Nonesterified/blood , Glycerol/blood , Lactic Acid/blood , Liver/enzymology , Liver/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Muscle, Skeletal/enzymology , Muscle, Skeletal/ultrastructure , Statistics, Nonparametric , Triglycerides/blood
9.
PLoS One ; 3(3): e1793, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-18335062

ABSTRACT

BACKGROUND: Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: Following a high-fat diet (HFD) regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARgamma, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1), the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. CONCLUSIONS: These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s) underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown, adipocyte lineage.


Subject(s)
Adipocytes/cytology , Adipose Tissue, Brown/cytology , Sterol Esterase/physiology , Animals , Cell Differentiation , Diet , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Obesity/genetics , Sterol Esterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...