Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 335: 117485, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36827803

ABSTRACT

The application of nitrification and urease inhibitors (NUI) in conjunction with nitrogen (N) fertilizers improves the efficiency of N fertilizers. However, NUI are frequently found in surface waters through leaching or surface runoff. Bank filtration (BF) is considered as a low-cost water treatment system providing high quality water by efficiently removing large amounts of organic micropollutants from surface water. The fate of NUI in managed aquifer recharge systems such as BF is poorly known. The aim of this work was to investigate sorption and degradation of NUI in simulated BF under near-natural conditions. Besides, the effect of NUI on the microbial biomass of slowly growing microorganisms and the role of microbial biomass on NUI removal was investigated. Duplicate sand columns (length 1.7 m) fed with surface water were spiked with a pulse consisting of four nitrification (1,2,4-triazole, dicyanodiamide, 3,4-dimethylpyrazole and 3-methylpyrazole) and two urease inhibitors (n-butyl-thiophosphoric acid triamide and n-(2-nitrophenyl) phosphoric triamide). The average spiking concentration of each NUI was 5 µg/L. Experimental and modeled breakthrough curves of NUI indicated no retardation for any of the inhibitors. Therefore, biodegradation was identified as the main elimination pathway for all substances and was highest in zones of high microbial biomass. Removal of 1,2,4-triazole was 50% and n-butyl-thiophosphoric acid triamide proved to be highly degradable and was completely removed after a hydraulic retention time (HRT) of 24 h. 50% of the mass recovery for nitrification inhibitors except for 3,4-dimethylpyrazole was observed at the effluent (4 days HRT). In addition, a mild effect of NUI on microbial biomass was noted. This study highlights that the degradation of NUI in BF depends on HRT and microbial biomass.


Subject(s)
Nitrification , Urease , Urease/metabolism , Fertilizers/analysis , Phosphates , Filtration
2.
J Contam Hydrol ; 246: 103960, 2022 04.
Article in English | MEDLINE | ID: mdl-35066264

ABSTRACT

Viruses, including human pathogenic viruses, can persist in water. For producing drinking water from surface water via bank filtration, natural attenuation capacities and the fate of viruses during the passage of aquatic sediments are of particular interest. Moreover, the increasing frequency of extreme hydrological events necessitate re-evaluation of the sustainability and efficacy of processes removing viruses. For this purpose, we performed bank sediment filtration experiments using a mesocosm in a technical-scale experimental facility that simulates a field situation under more tightly controlled conditions. We used the bacteriophage MS2 as a surrogate for enteric viruses to study the transport of different viral loads through the bank sediment. Additionally, we simulated a heavy rain event to investigate the re-mobilization of initially attached virus particles. We quantified the abundance of infectious MS2 phages by plaque assay and the total number of MS2 particles by qPCR. Also, we differentiated pore water concentrations by depths of the sediment column and investigated attachment to the sediment matrix at the end of the individual experimental phases. Bank filtration over a vertical distance of 80 cm through sandy sediment revealed a virus removal efficiency of 0.8 log10 for total MS2 particles and 1.7 log10 for infectious MS2 particles, with an initial phage concentration of 1.84 × 108 gene copies mL-1. A low load of infectious MS2 (1.9 × 106 plaque forming units mL-1) resulted in a greater removal efficiency (3.0 log10). The proportion of infectious MS2 phages of the total MS2 particle mass steadily decreased over time, i.e., in the course of individual breakthrough curves and with sediment depth. The simulated pulse of rainwater caused a front of low ionic strength water which resulted in pronounced phage remobilization. The high proportion of infectious MS2 among the detached phages indicated that attachment to the sediment matrix may substantially conserve virus infectivity. Therefore, the re-mobilization of previously attached viruses owing to hydrological extremes should be considered in water quality assessment and monitoring schemes.


Subject(s)
Levivirus , Water Purification , Filtration/methods , Humans , Hydrology , Rain , Water Purification/methods , Water Quality
3.
Sci Total Environ ; 699: 134387, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31670213

ABSTRACT

Riverbank filtration is a natural process that may ensure the cleaning of surface water for producing drinking water. For silver nanoparticles (AgNP), physico-chemical interaction with sediment surfaces is one major retention mechanism. However, the effect of flow velocity and the importance of biological retention, such as AgNP attachment to biomass, are not well understood, yet. We investigated AgNP (c = 0.6 mg L-1) transport at different spatial and temporal scales in pristine and previously pond water-aged sediment columns. Transport of AgNP under near-natural conditions was studied in a long-term riverbank filtration experiment over the course of one month with changing flow scenarios (i.e. transport at 0.7 m d-1, stagnation, and remobilization at 1.7 m d-1). To elucidate retention processes, we conducted small-scale lab column experiments at low (0.2 m d-1) and high (0.7 m d-1) flow rate using pristine and aged sediments. Overall, AgNP accumulated in the upper centimeters of the sediment both in lab and outdoor experiments. In the lab study, retention of AgNP by attachment to biological components was very effective under high and low flow rate with nearly complete NP accumulation in the upper 2 mm. When organic material was absent, abiotic filtration mechanisms led to NP retention in the upper 5 to 7 cm of the column. In the long-term study, AgNP were transported up to a depth of 25 cm. For the pristine sediment in the lab study and the outdoor experiments only erratic particle breakthrough was detected in a depth of 15 cm. We conclude that physico-chemical interactions of AgNP with sediment surfaces are efficient in retaining AgNP. The presence of organic material provides additional retention sites which increase the filtration capacity of the system. Nevertheless, erratic breakthrough events might transport NP into deeper sediment layers.


Subject(s)
Metal Nanoparticles/analysis , Silver/analysis , Water Pollutants, Chemical/analysis , Filtration , Rivers , Water Movements
4.
Sci Total Environ ; 688: 288-298, 2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31233912

ABSTRACT

The colloidal stability of nanoparticles NP in soil solution is important to assess their potential effects on ecosystems. The aim of this work was to elucidate the interactions between initial particle size di, particle number concentration (N0) as well as the characteristics of dissolved organic matter (DOM) for stabilizing Ag NP and TiO2 NP. In batch experiments using time-resolved dynamic light scattering (DLS), we investigated the aggregation of TiO2 NP (79 nm, 164 nm) and citrate-stabilised Ag NP (73 nm, 180 nm) in Ca2+ solution (2 mM) and two soil solutions, one extracted from a farmland and one from a floodplain soil (each containing 2 mM Ca2+). Our results demonstrate that the initial particle size and the particle number concentration affected aggregation more strongly in the presence of DOM than without DOM. The composition of DOM also affected aggregate size: NP formed larger aggregates in the presence of hydrophilic DOM than in the presence of hydrophobic DOM. Hydrophilic DOM showed a larger charge density than hydrophobic DOM. If Ca2+ is present, it may bridge DOM molecules, which may lead to greater NP destabilization. The results demonstrate that DOM interaction with NP may not only vary for different DOM characteristics (i.e. charge density) but may also be influenced by the presence of multivalent cations and different NP material; thus the effect of DOM on NP colloidal stability is not uniform.

5.
Environ Sci Pollut Res Int ; 26(16): 15905-15919, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30963436

ABSTRACT

Where surface-functionalized engineered nanoparticles (NP) occur in drinking water catchments, understanding their transport within and between environmental compartments such as surface water and groundwater is crucial for risk assessment of drinking water resources. The transport of NP is mainly controlled by (i) their surface properties, (ii) water chemistry, and (iii) surface properties of the stationary phase. Therefore, functionalization of NP surfaces by organic coatings may change their fate in the environment. In laboratory columns, we compared the mobility of CeO2 NP coated by the synthetic polymer polyacrylic acid (PAA) with CeO2 NP coated by natural organic matter (NOM) and humic acid (HA), respectively. The effect of ionic strength on transport in sand columns was investigated using deionized (DI) water and natural surface water with 2.2 mM Ca2+ (soft) and 4.5 mM Ca2+ (hard), respectively. Furthermore, the relevance of these findings was validated in a near-natural bank filtration experiment using HA-CeO2 NP. PAA-CeO2 NP were mobile under all tested water conditions, showing a breakthrough of 60% irrespective of the Ca2+ concentration. In contrast, NOM-CeO2 NP showed a lower mobility with a breakthrough of 27% in DI and < 10% in soft surface water. In hard surface water, NOM-CeO2 NP were completely retained in the first 2 cm of the column. The transport of HA-CeO2 NP in laboratory columns in soft surface water was lower compared to NOM-CeO2 NP with a strong accumulation of CeO2 NP in the first few centimeters of the column. Natural coatings were generally less stabilizing and more susceptible to increasing Ca2+ concentrations than the synthetic coating. The outdoor column experiment confirmed the low mobility of HA-CeO2 NP under more complex environmental conditions. From our experiments, we conclude that the synthetic polymer is more efficient in facilitating NP transport than natural coatings and hence, CeO2 NP mobility may vary significantly depending on the surface coating.


Subject(s)
Cerium/analysis , Geologic Sediments/chemistry , Nanoparticles/analysis , Water Pollutants, Chemical/analysis , Water/chemistry , Acrylic Resins/chemistry , Cerium/chemistry , Filtration , Groundwater/chemistry , Humic Substances , Nanoparticles/chemistry , Osmolar Concentration , Silicon Dioxide/chemistry , Surface Properties , Water Pollutants, Chemical/chemistry
6.
Sci Total Environ ; 645: 1153-1158, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30248840

ABSTRACT

Engineered nanomaterials (ENM) such as nano-sized cerium dioxide (CeO2) are increasingly applied. Meanwhile, concerns on their environmental fate are rising. Understanding the fate of ENM within and between environmental compartments such as surface water and groundwater is crucial for the protection of drinking water resources. Therefore, the colloidal stability of CeO2 ENM (2 mg L-1) was assessed with various surface coatings featuring different physico-chemical properties such as weakly anionic polyvinyl alcohol (PVA), strongly anionic polyacrylic acid (PAA) or complex natural organic matter (NOM) at various water compositions in batch experiments (pH 2-12, ionic strength 0-5 mM KCl or CaCl2). While uncoated CeO2 ENM aggregate in the range of pH 4-8 in 1 mM KCl solution, the results show that PAA, PVA and NOM surface coatings stabilize CeO2-ENM at neutral and alkaline pH in 1 mM KCl solution. Stabilization by PAA and NOM is associated with strongly negative zeta potentials below -20 mV, suggesting electrostatic repulsion as stabilization mechanism. No aggregation was detected up to 5 mM KCl for PAA- and NOM-coated CeO2 ENM. In contrast, CaCl2 induced aggregation at >2.2 mM CaCl2 for PAA and NOM-coated CeO2 ENM respectively. PVA-coated ENM showed zeta potentials of -15 mV to -5 mV in the presence of 0-5 mM ionic strength, suggesting steric effects as stabilization mechanism. The hydrodynamic diameter of PVA-coated ENM was larger compared to PAA and NOM at low ionic strength, but the size did not increase with ionic strength of the suspensions. The effect of ionic strength and counter ion valency (pH 7) on the colloidal stability of ENM depends on the prevailing stabilization mechanism of the organic coating. NOM can be similarly effective in colloidal stabilization of CeO2-ENM as PAA. Our results suggest natural Ca-rich waters will lead to ENM agglomeration even of coated CeO2-ENM.

7.
Sci Total Environ ; 645: 192-204, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30021176

ABSTRACT

Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.

8.
J Contam Hydrol ; 195: 31-39, 2016 12.
Article in English | MEDLINE | ID: mdl-27871667

ABSTRACT

Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting "soil-aged" Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH=5 and pH=9. The soil-aged Ag NP were less mobile at pH=5 than at pH=9 due to lower electrostatic repulsion at pH=5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (>90 kT) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.


Subject(s)
Metal Nanoparticles/analysis , Models, Theoretical , Silicon Dioxide/chemistry , Silver/analysis , Soil Pollutants/analysis , Soil/chemistry , Humic Substances/analysis , Hydrology/methods , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/chemistry , Porosity , Silver/chemistry , Soil Pollutants/chemistry , Solutions , Surface Properties , Water/analysis
9.
Sci Total Environ ; 518-519: 130-8, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25747372

ABSTRACT

Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface.


Subject(s)
Bacteriophages/chemistry , Colloids/chemistry , Geologic Sediments/virology , Soil Microbiology , Adsorption , Oxidation-Reduction , Porosity
10.
Sci Total Environ ; 535: 122-30, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25554386

ABSTRACT

The widespread use of engineered inorganic nanoparticles (EINP) leads to a growing risk for an unintended release into the environment. Despite the good characterization of EINP in regard to their function scale and the application areas, there is still a gap of knowledge concerning their behaviour in the different environmental compartments. Due to their high surface to volume ratio, surface properties and existence or development of a coating are of high importance for their stability and transport behaviour. However, analytical methods to investigate organic coatings on nanoparticles in aqueous media are scarce. We used Raman microspectroscopy in combination with surface-enhanced Raman scattering (SERS) to investigate humic acid coatings on silver nanoparticles under environmentally relevant conditions and in real world samples. This setup is more challenging than previous mechanistic studies using SERS to characterize the humic acids in tailored settings where only one type of organic matter is present and the concentrations of the nanoparticles can be easily adjusted to the experimental needs. SERS offers the unique opportunity to work with little sample preparation directly with liquid samples, thus significantly reducing artefacts. SERS spectra of different natural organic matter brought into contact with silver nanoparticles indicate humic acid in close proximity to the nanoparticles. This coating was also present after several washing steps by centrifugation and resuspension in deionized water and after an increase in ionic strength.


Subject(s)
Metal Nanoparticles/chemistry , Models, Chemical , Silver/chemistry , Spectrum Analysis, Raman , Surface Properties
11.
Sci Total Environ ; 535: 3-19, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25455109

ABSTRACT

Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).


Subject(s)
Environmental Pollutants , Nanoparticles , Silver Compounds , Thermodynamics , Titanium
12.
Sci Total Environ ; 535: 54-60, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25434472

ABSTRACT

Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 µg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces.


Subject(s)
Metal Nanoparticles/analysis , Models, Chemical , Silver/analysis , Soil Pollutants/analysis , Metal Nanoparticles/chemistry , Silver/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Solutions
13.
Int J Hyg Environ Health ; 217(8): 861-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25024100

ABSTRACT

To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered.


Subject(s)
Drinking Water/virology , Groundwater/virology , Oxygen , Silicon Dioxide , Viruses , Water Microbiology , Water Purification/methods , Adsorption , Filtration , Humans , Levivirus , Models, Theoretical , Oxidation-Reduction
14.
Environ Pollut ; 186: 7-13, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24333660

ABSTRACT

The aim of this study was to gain an understanding of the transport of C4-10 perfluoroalkyl carboxylic acids (PFCAs) and C4,6,8 perfluoroalkyl sulfonic acids (PFSAs) in a water-saturated sediment column representing a riverbank filtration scenario under near-natural conditions. Short-chain PFCAs and PFSAs with up to six C-atoms showed complete tracer-like breakthrough. Longer chain ones were retarded due to sorption to the sediment or due to other processes in the aqueous phase. The study reports the first column derived sediment-water partition coefficients ranging from 0.01 cm(3) g(-1) to 0.41 cm(3) g(-1) for C4,6 PFSAs and from 0.0 cm(3) g(-1) to 6.5 cm(3) g(-1) for C4,5,6,8,9 PFCAs. The results clearly indicate that short-chain PFCAs and PFSAs may pose a problem if contaminated surface waters are used for drinking water production via riverbank filtration.


Subject(s)
Fluorocarbons/analysis , Geologic Sediments/chemistry , Models, Chemical , Water Pollutants, Chemical/analysis , Carboxylic Acids/analysis , Kinetics
15.
Water Res ; 46(5): 1549-55, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22204940

ABSTRACT

One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23±4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T(1/2) (oxic)=2.4 days, T(1/2) (anoxic)=23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough.


Subject(s)
Carbon/chemistry , Geologic Sediments/chemistry , Oxygen , Uracil/analogs & derivatives , Water Pollutants, Chemical/chemistry , Alkaloids , Anaerobiosis , Bacterial Toxins , Cyanobacteria Toxins , Europe , Oxidation-Reduction , Temperature , Uracil/chemistry
16.
Water Res ; 45(3): 1338-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21112603

ABSTRACT

The occurrence of the cyanobacterial toxins anatoxin-a (ATX) and cylindrospermopsin (CYN) in surface waters has been reported throughout the world. Beside degradation, sorption is an important pathway for toxin elimination if these resources are used for drinking water production via sediment passage. However, to date studies that systematically investigated sorption of these toxins onto sediments are lacking. Therefore, the aim of our work was (i) to determine the adsorption coefficients of ATX and CYN according to the Freundlich and Langmuir model for sediments of various textures and (ii) to derive sorption-relevant sediment characteristics. We determined sorption parameters in air-dried samples of eight differently textured sediments using batch experiments. Results for both toxins showed best fits with the Langmuir model. Organic C proved to be the main sediment parameter determining CYN sorption. There was no or little CYN sorption on sandy and silty sediments (0-39 µg kg(-1)), respectively, presumably due to charge repulsion from the negatively charged surfaces. Sorption of ATX (max. sorbent loading ranging from 47 to 656 µg kg(-1)) was much stronger than that of CYN (max. sorbent loading ranging from 0 to 361 µg kg(-1)) and predominantly controlled by clay and to a minor degree also by organic C and silt. While ATX sorption to most sediments occurred mainly through cation exchange this mechanism played only a minor role in CYN sorption to organic C. Hence, high mobility for CYN and moderate mobility for ATX during sediment passage has to be expected.


Subject(s)
Geologic Sediments/chemistry , Tropanes/chemistry , Uracil/analogs & derivatives , Water Pollutants, Chemical/chemistry , Adsorption , Alkaloids , Aluminum Silicates/chemistry , Bacterial Toxins , Clay , Cyanobacteria Toxins , Environmental Monitoring , Molecular Structure , Silicon Dioxide/chemistry , Uracil/chemistry
17.
Toxicon ; 55(5): 999-1007, 2010 May.
Article in English | MEDLINE | ID: mdl-19596023

ABSTRACT

Recent results show that cylindrospermopsin is more frequent and widespread in surface waters than previously assumed. Studies on the fate of CYN in sediments are lacking, but this is important if these resources are used for drinking-water production via sediment passage. Therefore, the aim of our study was to determine a) CYN retention in two sandy sediments as a function of flow rate, CYN concentration, the presence of DOM and the content of fines (1% and 4%, respectively) and b) the influence of sediment preconditioning and DOM composition of the water (aquatic DOM versus DOM released from lysed cells) on CYN degradation. Retention of CYN proved negligible under the investigated conditions. Degradation in virgin sediments showed the highest lag phases (20 days). Preconditioned sediments showed no lag phase. The presence of aquatic DOM yielded highest degradation rates (kappa(1)=0.46 and 0.49 day(-1)) without a lag phase. Readily available organic carbon sources were preferentially metabolized and hence induced a lag phase. Thus, the presence and composition of DOM in the water proved important for both CYN degradation rates in preconditioned sediments and for the lag phase. Cylindrospermopsin degradation took place solely in the sediment and not in the water body.


Subject(s)
Alkaloids/chemistry , Cyanobacteria/metabolism , Geologic Sediments/chemistry , Uracil/analogs & derivatives , Water Pollutants, Chemical/chemistry , Bacterial Toxins , Biodegradation, Environmental , Cyanobacteria Toxins , Filtration , Humic Substances/analysis , Uracil/chemistry , Water Movements
18.
Environ Sci Technol ; 44(2): 657-62, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20000604

ABSTRACT

Microcystins (MCYSTs) are a group of structurally similar toxic peptides produced by cyanobacteria ("blue-green algae") which occur frequently in surface waters worldwide. Reliable elimination is necessary when using these waters as drinking water sources. Bank filtration and artificial groundwater recharge utilize adsorption and degradation processes in the subsurface, commonly through sand and gravel aquifers, for the elimination of a wide range of substances during drinking water (pre-) treatment. To obtain parameters for estimating whether MCYST breakthrough is likely in field settings, we tested MCYST elimination in laboratory experiments (batch experiments, column experiments) under a range of conditions. Adsorption coefficients (k(d)-values) obtained from batch studies ranged from 0.2 mL/g for filter sand to 11.6 mL/g for fine grained aquifer materials with 2% fine grains (<63 microm) and 0.8% organic matter. First order degradation rates in column studies reached 1.87 d(-1) under aerobic conditions and showed high variations under anoxic conditions (<0.01-1.35 d(-1)). These results show that, next to sediment texture, redox conditions play an important role for MCYST elimination during sediment passage. Biodegradation was identified as the dominating process for MCYST elimination in sandy aquifer material.


Subject(s)
Geologic Sediments/chemistry , Microcystins/chemistry , Adsorption , Biodegradation, Environmental , Oxidation-Reduction , Oxygen/chemistry
19.
J Environ Qual ; 38(3): 933-9, 2009.
Article in English | MEDLINE | ID: mdl-19329681

ABSTRACT

Liming is a common technique suggested for the stabilization of shooting range sites. We investigated the effect of an increase in pH on the mobilization of soluble and dispersible (colloidal) Pb, As, and Sb. Our hypothesis was that the addition of divalent cations counteracts the pH-induced mobilization of soluble and colloidal metal(loid)s. We determined soluble (operationally defined as the fraction < 10 nm obtained after centrifugation) and dispersible (filter cut-off 1200 nm) As, Pb, Sb, Fe, and C(org) concentrations in the filtered suspensions of batch extracts of topsoil samples (C(org): 8%) from a former shooting range site following a pH increase to values between 3.5 and 7 by adding a monovalent (KOH) or a divalent (Ca(OH)(2)) base. In the Ca(OH)(2)-treated samples, dissolved metal(loid) concentrations were 62 to 98% lower than those titrated with KOH to similar pH. Similarly, Ca reduced the concentration of dispersible Pb by 95%, but had little or no impact on dispersible As and Sb. We conclude that the counterion valency controls the mobility of metal(loid)s by affecting the mobility and sorption capacity of the sorbents (e.g., colloids, organic matter).


Subject(s)
Antimony/chemistry , Arsenic/chemistry , Cations, Divalent/chemistry , Lead/chemistry , Soil/analysis , Colloids , Environmental Restoration and Remediation/methods , Flocculation , Hydrogen-Ion Concentration , Organic Chemicals/chemistry , Solubility
20.
J Environ Qual ; 36(4): 1187-93, 2007.
Article in English | MEDLINE | ID: mdl-17596628

ABSTRACT

Drying of soil may increase the hydrophobicity of soil and affect the mobilization of colloids after re-wetting. Results of previous research suggest that colloid hydrophobicity is an important parameter in controlling the retention of colloids and colloid-associated substances in soils. We tested the hypothesis that air-drying of soil samples increases the hydrophobicity of water-dispersible colloids and whether air-drying affects the mobilization of colloid-associated heavy metals. We performed batch experiments with field-moist and air-dried (25 degrees C) soils from a former sewage farm (sandy loam), a municipal park (loamy sand), and a shooting range site (loamy sand with 25% C(org)). The filtered suspensions (<1.2 microm) were analyzed for concentrations of dissolved and colloidal organic C and heavy metals (Cu, Cd, Pb, Zn), average colloid size, zeta potential, and turbidity. The hydrophobicity of colloids was determined by their partitioning between a hydrophobic solid and a hydrophilic aqueous phase. Drying increased hydrophobicity of the solid phase but did not affect the hydrophobicity of the dispersed colloids. Drying decreased the amount of mobilized mineral and (organo-)mineral colloids in the sewage farm soils but increased the mobilization of organic colloids in the C-rich shooting range soil. Dried samples released less colloid-bound Cd and Zn than field-moist samples. Drying-induced mobilization of dissolved organic C caused a redistribution of Cu from the colloidal to the dissolved phase. We conclude that drying-induced colloid mobilization is not caused by a change in the physicochemical properties of the colloids. Therefore, it is likely that the mobilization of colloids in the field is caused by increasing shear forces or the disintegration of aggregates.


Subject(s)
Colloids/chemistry , Desiccation , Hydrophobic and Hydrophilic Interactions , Metals, Heavy/analysis , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...