Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 138(7)2016 07 01.
Article in English | MEDLINE | ID: mdl-27138135

ABSTRACT

In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal-external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.


Subject(s)
Cartilage, Articular/physiology , Gait/physiology , Knee Joint/physiology , Models, Biological , Muscle Contraction/physiology , Patella/physiology , Quadriceps Muscle/physiology , Adult , Computer Simulation , Humans , Male , Range of Motion, Articular/physiology , Stress, Mechanical , Tensile Strength , Weight-Bearing/physiology
2.
Comput Methods Biomech Biomed Engin ; 14(6): 573-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21302163

ABSTRACT

Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036-1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.


Subject(s)
Locomotion/physiology , Models, Biological , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Tibia/physiology , Computer Simulation , Elastic Modulus/physiology , Humans , Stress, Mechanical , Tensile Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...