Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1279896, 2023.
Article in English | MEDLINE | ID: mdl-37885658

ABSTRACT

Bacillus velezensis strain GB03 is a Gram-positive rhizosphere bacterium known for its ability to promote plant growth and immunity. This review provides a comprehensive overview of the research on GB03 from its initial discovery in Australian wheat fields in 1971 to its current applications. Recognized as a model plant growth-promoting rhizobacterium (PGPR), GB03 has exhibited outstanding performance in enhancing the growth and protection of many crop plants including cucumber, pepper, wheat, barley, soybean, and cotton. Notably, GB03 has been reported to elicit plant immune response, referred to as induced systemic resistance (ISR), against above-ground pathogens and insect pests. Moreover, a pivotal finding in GB03 was the first-ever identification of its bacterial volatile compounds, which are known to boost plant growth and activate ISR. Research conducted over the past five decades has clearly demonstrated the potential of GB03 as an eco-friendly substitute for conventional pesticides and fertilizers. Validating its safety, the U.S. Environmental Protection Agency endorsed GB03 for commercial use as Kodiak® in 1998. Subsequently, other compounds, such as BioYield™, were released as a biological control agent against soil-borne pathogens and as a biofertilizer, utilizing a durable spore formulation. More recently, GB03 has been utilized as a keystone modulator for engineering the rhizosphere microbiome and for eliciting microbe-induced plant volatiles. These extensive studies on GB03 underscore its significant role in sustainable agriculture, positioning it as a safe and environmentally-friendly solution for crop protection.

2.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-34250503

ABSTRACT

LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.

3.
Curr Microbiol ; 78(9): 3505-3515, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34292378

ABSTRACT

Antagonistic activity of strains from Bacillus species has made them among the preferred agricultural biological control agents against phytopathogenic fungi. These microorganisms' success is mostly based on the production of antagonistic secondary metabolites, mainly those of the non-ribosomal cyclic lipopeptides (CLPs) nature, which can affect phytopathogens directly (iturins and fengycins) or indirectly (surfactins and fengycins). However, abiotic factors in the target site can influence the behavior of the biocontrol traits, but to date, few studies attempting to decipher this kind of interaction have been conducted. This work aimed to evaluate the effect of temperature and culture medium on growth, antagonistic activity against Fusarium oxysporum f. sp. physali (Foph), and the profile of CLPs produced by Bacillus velezensis Bs006. The data showed that measured traits in Bs006 varied with temperature and medium interaction. The concentration of CLPs, as well as the antagonistic activity against Foph, was increased as the nutritional wealth, temperature, and time of incubation increased. The concentration of fengycins and iturins was higher than surfactins at high temperatures. However, a bacteriostatic effect was detected with a combination of Landy medium and 15 °C, which prevented both the biosynthesis of CLPs and the antagonistic activity. The results of this work highlight the importance of abiotic conditions of the target site where a biocontrol agent will be applied to stay active and develop its full antagonistic potential. This response by Bs006 could partly explain the variability of its biocontrol efficacy in the Foph-golden berry pathosystem.


Subject(s)
Bacillus , Culture Media , Fusarium , Lipopeptides/pharmacology , Plant Diseases , Temperature
4.
Trends Plant Sci ; 26(9): 968-983, 2021 09.
Article in English | MEDLINE | ID: mdl-34147324

ABSTRACT

Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.


Subject(s)
Bacteria , Plant Development , Plants
5.
Plant Dis ; 105(4): 1034-1041, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32931392

ABSTRACT

Farmers rely heavily on the use of strobilurin fungicides to manage sheath blight (ShB) caused by Rhizoctonia solani AG1-IA, the most important disease in rice in the southern United States. Greenhouse and field studies were conducted to evaluate the potential use of plant growth-promoting rhizobacteria (PGPRs) in combination with a reduced rate of azoxystrobin application as a strategy to improve the current fungicide-reliant management. Of the nine antagonistic PGPR strains screened in the greenhouse, Bacillus subtilis strain MBI600 provided the most significant and consistent suppression of ShB. Efficacy of strain MBI600 was further evaluated at the concentrations of 0, 103, 106, 109, and 1011 CFU/ml alone or in combinations with 0, 17, 33, 50, 67, 83, and 100% of the recommended application rate (0.16 kg a.i./ha) of azoxystrobin. Strain MBI600 applied at 106,109, and 1011 CFU/ml alone was effective in reducing ShB severity. Combinations of this strain at these rates with ≥33% of the recommended application rate of azoxystrobin further reduced ShB severity. A dose-response model defining the relationships between strain MBI600, azoxystrobin, and ShB severity was established. Estimates of the effective concentrations (EC50 and EC90) of strain MBI600 when applied in combination with 50% of the recommended application rate of azoxystrobin were 104 and 109 CFU/ml, respectively. A field trial was conducted over 4 years to verify the efficacy of their combinations. Strain MBI600 alone, when applied at 109 CFU/ml at the boot stage, reduced ShB severity but did not significantly increase grain yields each year. Combination of strain MBI600 with azoxystrobin at half of the recommended application rate improved efficacy of strain MBI600, reducing ShB severity to a level comparable to that of azoxystrobin applied at the full rate in all 4 years. The combined treatment also increased grain yield by 14 to 19%, comparable to the fungicide applied at the full rate in 3 of 4 years. Combined use of PGPR strain MBI600 with a reduced rate of azoxystrobin application can be a viable management option for control of ShB while allowing producers to use less fungicide on rice.


Subject(s)
Oryza , Plant Diseases/prevention & control , Pyrimidines , Rhizoctonia , Strobilurins/pharmacology , United States
6.
J Basic Microbiol ; 60(1): 27-36, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31617947

ABSTRACT

Limited information is available on the performance of plant growth-promoting inoculants or bioproducts under different soil nutritional or fertility conditions. Consequently, the objective of this study was to evaluate the effects of a commercially available Bacillus-containing bioproduct, Microlife Abundance, at concentrations of 5.5 and 6.5 log cfu/ml on early growth, fertilizer use-efficiency, and fruit yield of bell pepper (Capsicum annuum L.) under two different soil fertility conditions (25% and 100% recommended N rates). Two pot experiments were conducted with bell pepper: (a) a 4-week-long early growth test with inoculant treatments applied once at transplanting; and (b) a 13-week-long yield test with inoculant treatments applied at transplanting and again at first blossom-set. Results from the early growth test indicated that at both N fertilization levels, applying Abundance once at transplanting at 6.5 log cfu/ml rather than 5.5 log cfu/ml significantly increased root dry weight, total root length, root volume, root surface area, and total length of very fine roots compared with the noninoculated control by 20%, 13%, 17%, 15%, and 12%, respectively. In contrast to the early growth, results from the yield test showed that only at the 100% recommended N rate, applying Abundance twice at both concentrations significantly enhanced N fertilizer use-efficiency and marketable yield of bell pepper over the noninoculated control by 34% (5.5 log cfu/ml) and 30% (6.5 log cfu/ml). Therefore, the efficacy of the Bacillus-containing bioproduct Abundance in enhancing fertilizer use-efficiency and marketable yield of bell pepper varied between soil nutritional conditions, but the early growth promotion effect of Abundance did not. Our results also demonstrate that selected microbial-based bioproducts, like Abundance, can be compatible with chemical fertilizers to enhance fertilizer use-efficiency and crop yields, but cannot be used as complete substitutes for chemical fertilizers.


Subject(s)
Agricultural Inoculants/physiology , Bacillus/physiology , Capsicum/growth & development , Capsicum/microbiology , Soil/chemistry , Capsicum/metabolism , Ecosystem , Fertilizers/analysis , Fertilizers/microbiology , Fruit/growth & development , Fruit/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism
7.
Pest Manag Sci ; 76(3): 1078-1084, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31515913

ABSTRACT

BACKGROUND: Inoculation of bermudagrass with rhizobacterial biostimulants can increase plant growth and influence relationships with grass-feeding herbivores. Tunneling and root-feeding behaviors of tawny mole crickets cause severe damage to grass in pastures, golf courses, and lawns. The goal of this study was to determine if inoculation of bermudagrass by a rhizobacteria blend (plant growth-promoting rhizobacteria, PGPR) increases the tolerance of hybrid bermudagrass to tawny mole crickets in captivity and under field conditions. RESULTS: Bermudagrass in arenas treated with a rhizobacteria blend then infested with tawny mole crickets produced significantly greater root lengths compared to bermudagrass that was either fertilized and infested with mole crickets, or bermudagrass without mole crickets. Bermudagrass treated with either the rhizobacteria blend or fertilizer produce similar top growth, and both treatments in the presence of mole crickets produced greater top growth than bermudagrass without mole crickets. Bermudagrass field plots infested naturally with mole crickets and treated twice with the rhizobacteria blend, or the rhizobacteria blend mixed with bifenthrin produced similar damage ratings as plots treated twice with bifenthrin. The rhizobacteria blend mixed with bifenthrin provided more consistent reductions in the surface activity of mole crickets relative to non-treated plots. CONCLUSION: Enhanced growth of bermudagrass from fertilizer or rhizobacteria increased tolerance of bermudagrass to damage from tawny mole crickets. Application of PGPR or a PGPR-bifenthrin mixture to turfgrass damaged by mole crickets provided comparable reductions to a short residual, synthetic pyrethroid insecticide. Rhizobacterial products have potential utility for IPM of root herbivores. © 2019 Society of Chemical Industry.


Subject(s)
Cynodon , Gryllidae , Animals , Drug Tolerance , Herbivory
8.
Plants (Basel) ; 8(5)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075893

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are increasingly used in crops worldwide. While selected PGPR strains can reproducibly promote plant growth under controlled greenhouse conditions, their efficacy in the field is often more variable. Our overall aim was to determine if pectin or orange peel (OP) amendments to Bacillus velezensis (Bv) PGPR strains could increase soybean growth and nodulation by Bradyrhizobium japonicum in greenhouse and field experiments to reduce variability. The treatments included untreated soybean seeds planted in field soil that contained Bv PGPR strains and non-inoculated controls with and without 0.1% (w/v) pectin or (1 or 10 mg/200 µL) orange peel (OP) amendment. In greenhouse and field tests, 35 and 55 days after planting (DAP), the plants were removed from pots, washed, and analyzed for treatment effects. In greenhouse trials, the rhizobial inoculant was not added with Bv strains and pectin or OP amendment, but in the field trial, a commercial B. japonicum inoculant was used with Bv strains and pectin amendment. In the greenhouse tests, soybean seeds inoculated with Bv AP193 and pectin had significantly increased soybean shoot length, dry weight, and nodulation by indigenous Bradyrhizobium compared to AP193 without pectin. In the field trial, pectin with Bv AP193 significantly increased the shoot length, dry weight, and nodulation of a commercial Bradyrhizobium japonicum compared to Bv AP193 without pectin. In greenhouse tests, OP amendment with AP193 at 10 mg significantly increased the dry weight of shoots and roots compared to AP193 without OP amendment. The results demonstrate that pectin-rich amendments can enhance Bv-mediated soybean growth promotion and nodulation by indigenous and inoculated B. japonicum.

9.
Pest Manag Sci ; 75(12): 3210-3217, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30957395

ABSTRACT

BACKGROUND: Inoculation of hybrid bermudagrass with plant growth-promoting rhizobacteria (PGPR) can increase plant growth and influence relationships with above-ground herbivores like fall armyworms. However, few experiments have evaluated PGPR applications relative to root herbivory. Root-feeding white grubs cause severe damage to grasses, especially in tall fescue pastures, golf courses, and lawns. Since bacterial inoculants enhance root growth, the goal of this study was to determine if the inoculation of hybrid bermudagrass by rhizobacteria can increase the tolerance of tall fescue and hybrid bermudagrass to damage from white grub feeding, and if PGPR are compatible with neonicotinoid insecticides commonly used for white grub control. RESULTS: In trials with tall fescue and hybrid bermudagrass, grasses were treated with the PGPR strain mixture Blend 20 or nitrogen or left non-treated and were then infested with Japanese beetle grubs. Grasses treated with PGPR and nitrogen fertilizer produced significantly more top growth than the non-treated grub-infested controls. Tall fescue and hybrid bermudagrass treated with Blend 20 produced root mass similar to or greater than nitrogen fertilized grasses. Both grasses treated with Blend 20 had greater root mass than non-treated infested grass. No treatment negatively impacted grub survival, and weight gains of grubs were similar for all treatments. Bacterial strains were typically compatible with insecticides used to control white grubs. CONCLUSION: PGPR and nitrogen fertilization stimulate root growth resulting in tolerance of tall fescue and hybrid bermudagrass to white grub infestation. PGPR, acting as biostimulants to increase root biomass on grasses, may have utility for IPM of root herbivores. © 2019 Society of Chemical Industry.


Subject(s)
Agricultural Inoculants/physiology , Coleoptera/physiology , Cynodon/growth & development , Cynodon/microbiology , Festuca/growth & development , Herbivory , Insecticides/administration & dosage , Animals , Bacterial Physiological Phenomena , Coleoptera/growth & development , Food Chain , Larva/growth & development , Larva/physiology , Neonicotinoids/administration & dosage , Plant Roots/microbiology
10.
Int J Syst Evol Microbiol ; 69(5): 1438-1442, 2019 May.
Article in English | MEDLINE | ID: mdl-30893028

ABSTRACT

A Gram-stain-positive, aerobic bacterium, TB-66T, was isolated from a pile of bat guano in a cave of New Mexico, USA. On the basis of 16S rRNA gene sequence similarity comparisons, strain TB-66Tgrouped together with Filibacter limicola showing a 16S rRNA gene sequence similarity of 98.5 % to the type strain. The quinone system of strain TB-66T consisted predominantly of menaquinone MK-7. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylserine and three unidentified phospholipids. The peptidoglycan type was A4α l-Lys-d-Glu (A11.33). The major fatty acids were C15 : 0 anteiso, C16 : 0, and C16 : 1 ω7c. The G+C content of the genomic DNA was 37.6 (±1.8) mol%. On the basis of the genotypic and phenotypic properties it is clear that strain TB-66T represents a member of the genus Filibacter, but is distinct from the only other species in the genus, Filibacter limicola DSM 13886T. We propose a novel species with the name Filibacter tadaridae sp. nov. The type strain is TB-66T (= CIP 111629T= LMG 30660T= CCM 8866T).


Subject(s)
Chiroptera/microbiology , Feces/microbiology , Phylogeny , Planococcaceae/classification , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , New Mexico , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , Planococcaceae/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
11.
Front Microbiol ; 9: 914, 2018.
Article in English | MEDLINE | ID: mdl-29867825

ABSTRACT

Bats are known to be reservoirs for a variety of mammalian pathogens, including viruses, fungi, and bacteria. Many of the studies examining the microbial community inhabiting bats have investigated bacterial taxa found within specific bat tissues and isolated bat guano pellets, but relatively few studies have explored bacterial diversity within bat guano piles. In large bat caves, bat guano can accumulate over time, creating piles several meters deep and forming complex interactions with coprophagous organisms in a habitat with low light and oxygen. As the guano decays, the nutrient composition changes, but the bacterial communities deep within the pile have not been characterized. Here, we assess the bacterial communities across varying depths within the guano pile using both culture-independent and culture-dependent methods. We found that although similar taxa are found throughout the guano pile, the relative abundances of taxa within the pile shift, allowing certain taxa to dominate the bacterial community at varying depths. We also identified potential bacterial functions being performed within the bat guano as various depths within the pile and found little variation in terms of the dominant predicted functions, suggesting that although the relative abundances of bacterial taxa are changing, the functions being performed are similar. Additionally, we cultured 15 different bacterial species, including 2 not present in our culture-independent analysis, and discuss the pathogenicity potential of these taxa. This study represents the first characterization of the bacterial community from the extreme environment within a bat guano pile and demonstrates the potential for bat caves as resources for identifying new bacterial species.

12.
J Basic Microbiol ; 58(5): 459-471, 2018 May.
Article in English | MEDLINE | ID: mdl-29473969

ABSTRACT

The aims of this study were to isolate and characterize N2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Magnoliopsida/growth & development , Nitrogen Fixation , Panicum/growth & development , Plant Development , Bacteria/enzymology , Bacteria/genetics , Biomass , Crops, Agricultural , DNA, Bacterial/analysis , Fertilizers , Food , Genes, Bacterial/genetics , Indoleacetic Acids/metabolism , Magnoliopsida/microbiology , Meristem/growth & development , Nitrogen/metabolism , Nitrogenase , Panicum/microbiology , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology , RNA, Ribosomal, 16S , Rhizosphere , Seeds/growth & development , Seeds/microbiology , Siderophores/metabolism , Soil , Soil Microbiology , Triticum/growth & development , Triticum/microbiology , Zea mays/growth & development , Zea mays/microbiology
13.
Plant Dis ; 102(1): 67-72, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30673446

ABSTRACT

Several studies have shown that mixtures of plant-growth-promoting rhizobacteria (PGPR) could enhance biological control activity for multiple plant diseases through the mechanisms of induced systemic resistance or antagonism. Prior experiments showed that four individual PGPR strains-AP69 (Bacillus altitudinis), AP197 (B. velezensis), AP199 (B. velezensis), and AP298 (B. velezensis)-had broad-spectrum biocontrol activity via antagonism in growth chambers against two foliar bacterial pathogens (Xanthomonas axonopodis pv. vesicatoria and Pseudomonas syringae pv. tomato) and one of two tested soilborne fungal pathogens (Rhizoctonia solani and Pythium ultimum). Based on these findings, the overall hypothesis of this study was that a mixture of two individual PGPR strains would exhibit better overall biocontrol and plant-growth promotion than the individual PGPR strains. Two separate greenhouse experiments were conducted. In each experiment, two individual PGPR strains and their mixtures were tested for biological control of three different diseases and for plant-growth promotion in the presence of the pathogens. The results demonstrated that the two individual PGPR strains and their mixtures exhibited both biological control of multiple plant diseases and plant-growth promotion. Overall, the levels of disease suppression and growth promotion were greater with mixtures than with individual PGPR strains.


Subject(s)
Bacillus/chemistry , Biological Control Agents/chemistry , Capsicum/microbiology , Cucumis sativus/microbiology , Pest Control, Biological , Plant Diseases/prevention & control , Solanum lycopersicum/microbiology , Pseudomonas syringae/physiology , Pythium/physiology , Rhizoctonia/physiology , Xanthomonas axonopodis/physiology
14.
Int J Syst Evol Microbiol ; 67(12): 4956-4961, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29056111

ABSTRACT

A Gram-positive-staining, aerobic, non-endospore-forming bacterial strain (JJ-59T), isolated from a field-grown maize plant in Dunbar, Nebraska in 2014 was studied by a polyphasic approach. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-59T was shown to be a member of the genus Paenibacillus, most closely related to the type strains of Paenibacillus aceris (98.6 % 16S rRNA gene sequence similarity) and Paenibacillus chondroitinus (97.8 %). For all other type strains of species of the genus Paenibacillus lower 16S rRNA gene sequence similarities were obtained. DNA-DNA hybridization values of strain JJ-59T to the type strains of P. aceris and P. chondroitinus were 26 % (reciprocal, 59 %) and 52 % (reciprocal, 59 %), respectively. Chemotaxonomic characteristics such as the presence of meso-diaminopimelic acid in the peptidoglycan, the major quinone MK-7 and spermidine as the major polyamine were in agreement with the characteristics of the genus Paenibacillus. Strain JJ-59T shared with its next related species P. aceris the major lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminophospholipid, but the presence/absence of certain lipids was clearly distinguishable. Major fatty acids of strain JJ-59T were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0, and the genomic G+C content is 47.2 mol%. Physiological and biochemical characteristics of strain JJ-59T were clearly different from the most closely related species of the genus Paenibacillus. Thus, strain JJ-59T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus nebraskensis sp. nov. is proposed, with JJ-59T (=DSM 103623T=CIP 111179T=LMG 29764T) as the type strain.


Subject(s)
Paenibacillus/classification , Phylogeny , Plant Roots/microbiology , Zea mays/microbiology , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nebraska , Nucleic Acid Hybridization , Paenibacillus/genetics , Paenibacillus/isolation & purification , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
15.
Environ Entomol ; 46(4): 831-838, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28881947

ABSTRACT

Nonpathogenic soil bacteria can colonize the rhizosphere and induce unique plant phenotypes that may influence plant-insect interactions. However, few studies have considered the influences of bacteria-plant interactions on insect feeding and oviposition. The objective of this study was to determine how rhizobacterial inoculation of bermudagrass affects larval development and ovipositional behaviors of the fall armyworm (Spodoptera frugiperda J.E. Smith). Eight blends of rhizobacteria known to induce root or shoot growth in grasses were applied weekly to hybrid bermudagrass for 5 wk. Oviposition was evaluated in two no-choice trials with bacteria-treated, fertilized, or nontreated grass. Grass blades from these treatments were extracted in polar and nonpolar solvents and assayed for oviposition responses. Another experiment compared the development of fall armyworm larvae on bermudagrass treated with each of the eight rhizobacterial blends for 5 wk to larvae fed nontreated bermudagrass. Females deposited more eggs on nontreated and fertilized grass and ≤34% of eggs on grass treated with rhizobacterial blends. Moths exposed to polar and nonpolar extracts were unable to reproduce these results. Larval and pupal weights at days 10 and 12 and the number of adults to eclose were lower for larvae fed some, but not all, bacteria-treated bermudagrass relative to controls. This is one of the few studies to investigate plant-microbe-insect interactions in an economically important system. Although the effects noted with fall armyworm are limited, induced changes in roots also reported for these bacteria may have greater utility than foliar changes for mediating interactions with biotic or abiotic stresses.


Subject(s)
Agricultural Inoculants/chemistry , Bacillales/chemistry , Cynodon/microbiology , Moths/microbiology , Moths/physiology , Pest Control, Biological , Animals , Bacillus/chemistry , Brevibacillus/chemistry , Cynodon/growth & development , Larva/growth & development , Larva/microbiology , Larva/physiology , Moths/growth & development , Oviposition , Paenibacillus/chemistry , Pupa/growth & development , Pupa/microbiology , Pupa/physiology
16.
PLoS One ; 12(7): e0181201, 2017.
Article in English | MEDLINE | ID: mdl-28704498

ABSTRACT

Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.


Subject(s)
Bacillus/physiology , Glycine max/microbiology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Plant Roots/microbiology , Spores, Bacterial/physiology , Tylenchoidea/pathogenicity , Animals , Antibiosis/physiology , Plant Diseases/parasitology , Plant Roots/parasitology , Secernentea Infections/prevention & control , Glycine max/growth & development , Glycine max/parasitology , Tylenchoidea/microbiology
17.
Nat Protoc ; 12(7): 1359-1377, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28617451

ABSTRACT

Airborne chemical signals emitted by bacteria influence the behavior of other bacteria and plants. We present an overview of in vitro methods for evaluating bacterial and plant responses to bacterial volatile compounds (BVCs). Three types of equipment have been used to physically separate the bacterial test strains from either other bacterial strains or plants (in our laboratory we use either Arabidopsis or tobacco plant seedlings): a Petri dish containing two compartments (BI Petri dish); two Petri dishes connected with tubing; and a microtiter-based assay. The optimized procedure for the BI Petri dish system is described in this protocol and can be widely used for elucidation of potential function in interactions between diverse microbes and those plant and chemical volatiles emitted by bacteria that are most likely to mediate bacterial or plant responses to BVCs. We also describe a procedure for metabolome-based BVC profiling via dynamic (i.e., continuous airflow) or static headspace sampling using solid-phase microextraction (SPME). Using both these procedures, bacteria-bacteria communications and bacteria-plant interactions mediated by BVCs can be rapidly investigated (within 1-4 weeks).


Subject(s)
Arabidopsis/microbiology , Bacteria/metabolism , Host-Pathogen Interactions , Microbial Interactions , Nicotiana/microbiology , Volatile Organic Compounds/metabolism
18.
Phytopathology ; 107(8): 928-936, 2017 08.
Article in English | MEDLINE | ID: mdl-28440700

ABSTRACT

A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.


Subject(s)
Biological Control Agents , Plant Diseases/prevention & control , Plants/microbiology , Rhizobiaceae/physiology , Fungi , Plant Diseases/microbiology
19.
Int J Syst Evol Microbiol ; 67(5): 1241-1246, 2017 May.
Article in English | MEDLINE | ID: mdl-28086067

ABSTRACT

A Gram-positive-staining, aerobic organism, isolated from the rhizosphere of Zea mays, was investigated in detail. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-247T was grouped into the genus Bacillus, most closely related to Bacillus foraminis (98.4 %). The 16S rRNA gene sequence similarity to the sequences of the type strains of other species of the genus Bacillus was <97.4 %. The fatty acid profile with the major fatty acids, anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 supported the grouping of the strain to the genus Bacillus. The polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified aminophospholipid. The major quinone was menaquinone MK-7, and the major polyamine was spermidine. The genomic DNA G+C content of strain JJ-247T was 44.5 mol%. DNA-DNA hybridizations with the type strain B. foraminis LMG 23147T resulted in values below 70 %. In addition, physiological and biochemical test results allowed a clear phenotypic differentiation of strain JJ-247T from B. foraminis. As a consequence, JJ-247T represents a novel species of the genus Bacillus, for which we propose the name Bacillus zeae sp. nov., with JJ-247T (=CCM 8726T=LMG 29876T) as the type strain.


Subject(s)
Bacillus/classification , Phylogeny , Rhizosphere , Soil Microbiology , Zea mays/microbiology , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nebraska , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
Int J Syst Evol Microbiol ; 67(4): 1058-1063, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28068214

ABSTRACT

A Gram-stain-positive, aerobic, endospore-forming bacterial strain isolated from the rhizosphere of Zea mays was studied to determine its detailed taxonomic position. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-64T was shown to be a member of the genus Paenibacillus, most closely related to the type strains of Paenibacillus silagei (99 %) and Paenibacillus borealis (97.5 %). 16S rRNA gene sequence similarity to all other Paenibacillus species was ≤97.5 %. DNA-DNA hybridization values to the type strains of P. silagei and P. borealis were 51 % (reciprocal 25 %) and 31 % (reciprocal 37 %), respectively. The presence of meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan, the major quinone MK-7 and the polyamine pattern with spermidine as the major component were well in line with the characteristics of the genus Paenibacillus. Furthermore, the polar lipid profile of strain JJ-64T with the predominant lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and two unidentified aminophospholipids reflected the close phylogenetic relatedness to P. silagei. Major fatty acids were iso- and anteiso-branched components. Physiological and biochemical characteristics allowed the further phenotypic differentiation of strain JJ-64T from the most closely related species. Thus, strain JJ-64T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus rhizoplanae sp. nov. is proposed. The type strain is JJ-64T (=LMG 29875T=CCM 8725T).


Subject(s)
Paenibacillus/classification , Phylogeny , Rhizosphere , Zea mays/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Nucleic Acid Hybridization , Paenibacillus/genetics , Paenibacillus/isolation & purification , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL