Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(1): e0186423, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38078763

ABSTRACT

Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.


Subject(s)
Bacteria , Sulfides , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , DNA , Sulfur , Oxidation-Reduction
2.
Environ Sci Technol ; 57(36): 13530-13540, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37639370

ABSTRACT

Removal of hydrogen sulfide (H2S) can be achieved using the sustainable biological desulfurization process, where H2S is converted to elemental sulfur using sulfide-oxidizing bacteria (SOB). A dual-bioreactor process was recently developed where an anaerobic (sulfidic) bioreactor was used between the absorber column and micro-oxic bioreactor. In the absorber column and sulfidic bioreactor, polysulfides (Sx2-) are formed due to the chemical equilibrium between H2S and sulfur (S8). Sx2- is thought to be the intermediate for SOB to produce sulfur via H2S oxidation. In this study, we quantify Sx2-, determine their chain-length distribution under high H2S loading rates, and elucidate the relationship between biomass and the observed biological removal of sulfides under anaerobic conditions. A linear relationship was observed between Sx2- concentration and H2S loading rates at a constant biomass concentration. Increasing biomass concentrations resulted in a lower measured Sx2- concentration at similar H2S loading rates in the sulfidic bioreactor. Sx2- of chain length 6 (S62-) showed a substantial decrease at higher biomass concentrations. Identifying Sx2- concentrations and their chain lengths as a function of biomass concentration and the sulfide loading rate is key in understanding and controlling sulfide uptake by the SOB. This knowledge will contribute to a better understanding of how to reach and maintain a high selectivity for S8 formation in the dual-reactor biological desulfurization process.


Subject(s)
Hydrogen Sulfide , Sulfides , Biomass , Sulfur
4.
Environ Sci Technol ; 57(31): 11561-11571, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37498945

ABSTRACT

Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.


Subject(s)
Ammonium Compounds , Ammonium Compounds/chemistry , Wastewater , Bioreactors , Oxidation-Reduction , Oxygen , Nitrogen/metabolism
5.
Trends Biotechnol ; 41(3): 323-330, 2023 03.
Article in English | MEDLINE | ID: mdl-36669946

ABSTRACT

Stimulated by the desire to achieve a Net Zero energy economy, the demand for renewable fuels is growing rapidly. The production of toxic waste streams that accompanies the transition from fossil fuels to renewable fuels is often overlooked. These waste streams include, among others, thiols and ammonia, and benzene, toluene, and xylene (BTX). When suitable treatment technologies are available, these compounds can be converted to valuable nutrients. In this opinion article, we provide an overview of expected waste streams and their characteristics. We indicate future challenges for associated waste streams, such as the lag in developing resource recovery technologies. Furthermore, we discuss unexploited opportunities to recover valuable nutrients from these waste streams.


Subject(s)
Environmental Pollutants , Renewable Energy
6.
Bioresour Technol ; 369: 128435, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481375

ABSTRACT

Sulphide is a toxic and corrosive compound and requires removal from waste streams. Recent discoveries show that sulphide oxidising bacteria (SOB) from modern desulphurisation plants are able to spatially separate sulphide removal and oxygen reduction when exposed to intermittent anaerobic and aerobic environments. Here, SOB act as electron shuttles between electron donor and acceptor. The underlying mechanisms for electron shuttling are of yet unknown. To investigate the anaerobic sulphide removal of SOB, batch experiments and mathematical models were applied. The sulphide removal capacity decreased at increasing biomass concentrations. At 0.6 mgN/L SOB could remove up to 8 mgS/mgN in 30 min. It was found that biological activity determines sulphide removal, alongside chemical processes. Anaerobic oxidation of electron carriers was determined to only explain 0.1% of charge storage, where irreversible cleavage of long chain polysulphides could explain full sulphide storage. Different sulphide removal and intracellular storage processes are postulated.


Subject(s)
Bacteria , Sulfides , Anaerobiosis , Sulfides/chemistry , Models, Theoretical , Oxidation-Reduction , Bacteria, Anaerobic , Bioreactors/microbiology
7.
Water Res ; 227: 119296, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36351351

ABSTRACT

For over 30 years, biological gas desulfurization under halo-alkaline conditions has been studied and optimized. This technology is currently applied in already 270 commercial installations worldwide. Sulfur particle separation, however, remains a challenge; a fraction of sulfur particles is often too small for liquid-solid separation with conventional separation technology. In this article, we report the effects of a novel sulfidic reactor, inserted in the conventional process set-up, on sulfur particle size and morphology. In the sulfidic reactor polysulfide is produced by the reaction of elemental sulfur particles and sulfide, which is again converted to elemental sulfur in a gas-lift reactor. We analyzed sulfur particles produced in continuous, long term lab-scale reactor experiments under various sulfide concentrations and sulfidic retention times. The analyses were performed with laser diffraction particle size analysis and light microscopy. These show that the smallest particles (< 1 µm) have mostly disappeared under the highest sulfide concentration (4.1 mM) and sulfidic retention time (45 min). Under these conditions also agglomeration of sulfur particles was promoted. Model calculations with thermodynamic and previously derived kinetic data on polysulfide formation confirm the experimental data on the removal of the smallest particles. Under the 'highest sulfidic pressure', the model predicts that equilibrium conditions are reached between sulfur, sulfide and polysulfide and that 100% of the sulfur particles <1 µm are dissolved by the (autocatalytic) formation of polysulfides. These experiments and modeling results demonstrate that the insertion of a novel sulfidic reactor in the conventional process set-up promotes the removal of the smallest individual sulfur particles and promotes the production of sulfur agglomerates. The novel sulfidic reactor is therefore a promising process addition with the potential to improve process operation, sulfur separation and sulfur recovery.


Subject(s)
Sulfides , Sulfur , Oxidation-Reduction , Kinetics , Bioreactors
8.
Appl Microbiol Biotechnol ; 106(4): 1759-1776, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35147744

ABSTRACT

In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. KEY POINTS: • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process.


Subject(s)
Bioreactors , Microbiota , Bioreactors/microbiology , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sulfates , Sulfides
9.
J Hazard Mater ; 424(Pt A): 127358, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34879559

ABSTRACT

Sulfide oxidizing bacteria (SOB) are widely applied in industry to convert toxic H2S into elemental sulfur. Haloalkaliphilic planktonic SOB can remove sulfide from solution under anaerobic conditions (SOB are 'charged'), and release electrons at an electrode (discharge of SOB). The effect of this electron shuttling on product formation and biomass growth is not known. Here, we study and demonstrate a continuous process in which SOB remove sulfide from solution in an anaerobic 'uptake chamber', and shuttle these electrons to the anode of an electrochemical cell, in the absence of dissolved sulfide. Two experiments over 31 and 41 days were performed. At a sulfide loading rate of 1.1 mmolS/day, electricity was produced continuously (3 A/m2) without dissolved sulfide in the anolyte. The main end product was sulfate (56% in experiment 1% and 78% in experiment 2), and 87% and 77% of the electrons in sulfide were recovered as electricity. It was found that the current density was dependent on the sulfide loading rate and not on the anode potential. Biological growth occurred, mainly at the anode as biofilm, in which the deltaproteobacterial genus Desulfurivibrio was dominating. Our results demonstrate a novel strategy to produce electricity from sulfide in an electrochemical system.


Subject(s)
Electrons , Hydrogen Sulfide , Bacteria , Bioreactors , Electricity , Oxidation-Reduction , Sulfides
10.
J Hazard Mater ; 424(Pt D): 127696, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34823957

ABSTRACT

We investigated the effect of polysulfide formation on properties of biologically produced elemental sulfur (S8) crystals, which are produced during biological desulfurization (BD) of gas. The recent addition of an anoxic-sulfidic reactor (AnSuR) to the BD process resulted in agglomerated particles with better settleability for S8 separation. In the AnSuR, polysulfides are formed by the reaction of bisulfide (HS-) with S8 and are subsequently oxidized to S8 in a gas-lift reactor. Therefore, sulfur particles from the BD are shaped (i.e. morphology and particle size) both by formation and dissolution. We assessed the reaction of HS- with S8 particles in anoxic, abiotic experiments in a batch reactor using two S8 samples from industrial BD reactors. Under these conditions, the sulfur particle surface became coarser and more porous, and in addition the smallest particles disappeared. Agglomerates initially fell apart but were reformed at a later stage. Moreover, we found different observed polysulfide formation rates for each S8 sample, which was related to the initial morphology and size. Our findings show that particle properties can be controlled abiotically and that settleability of S8 is increased by increasing both the HS--S8 ratio and retention time.


Subject(s)
Sulfides , Sulfur , Oxidation-Reduction , Particle Size
11.
ACS Omega ; 6(42): 27913-27923, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34722991

ABSTRACT

This article presents a novel crystal agglomeration strategy for elemental sulfur (S) produced during biological desulfurization (BD). A key element is the nucleophilic dissolution of S by sulfide (HS-) to polysulfides (S x 2-), which was enhanced by a sulfide-rich, anoxic reactor. This study demonstrates that with enhanced S x 2- formation, crystal agglomerates are formed with a uniform size (14.7 ± 3.1 µm). In contrast, with minimal S x 2- formation, particle size fluctuates markedly (5.6 ± 5.9 µm) due to the presence of agglomerates and single crystals. Microscopic analysis showed that the uniformly sized agglomerates had an irregular structure, whereas the loose particles and agglomerates were more defined and bipyramidal. The irregular agglomerates are explained by dissolution of S by (poly)sulfides, which likely changed the crystal surface structure and disrupted crystal growth. Furthermore, S from S x 2- appeared to form at least 5× faster than from HS- based on the average S x 2- chain length of x ≈ 5, thereby stimulating particle agglomeration. In addition, microscopy suggested that S crystal growth proceeded via amorphous S globules. Our findings imply that the crystallization product is controlled by the balance between dissolution and formation of S. This new insight has a strong potential to prevent poor S settleability in BD.

12.
J Hazard Mater ; 398: 123002, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32506049

ABSTRACT

This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.


Subject(s)
Hydrogen Sulfide , Bacteria/genetics , Bioreactors , Ectothiorhodospiraceae , Gammaproteobacteria , Gases , Oxidation-Reduction , Sulfhydryl Compounds , Sulfur
13.
Environ Sci Ecotechnol ; 1: 100009, 2020 Jan.
Article in English | MEDLINE | ID: mdl-36160373

ABSTRACT

Organosulfur compounds, present in e.g. the pulp and paper industry, biogas and natural gas, need to be removed as they potentially affect human health and harm the environment. The treatment of organosulfur compounds is a challenge, as an economically feasible technology is lacking. In this study, we demonstrate that organosulfur compounds can be degraded to sulfide in bioelectrochemical systems (BESs). Methanethiol, ethanethiol, propanethiol and dimethyl disulfide were supplied separately to the biocathodes of BESs, which were controlled at a constant current density of 2 A/m2 and 4 A/m2. The decrease of methanethiol in the gas phase was correlated to the increase of dissolved sulfide in the liquid phase. A sulfur recovery, as sulfide, of 64% was found over 5 days with an addition of 0.1 â€‹mM methanethiol. Sulfur recoveries over 22 days with a total organosulfur compound addition of 1.85 â€‹mM were 18% for methanethiol and ethanethiol, 17% for propanethiol and 22% for dimethyl disulfide. No sulfide was formed in electrochemical nor biological control experiments, demonstrating that both current and microorganisms are required for the conversion of organosulfur compounds. This new application of BES for degradation of organosulfur components may unlock alternative strategies for the abatement of anthropogenic organosulfur emissions.

14.
J Hazard Mater ; 383: 121104, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31586887

ABSTRACT

We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two steps: i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ±â€¯265 ppmv at 25.4 °C to 69 ±â€¯25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ±â€¯126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.


Subject(s)
Alkalies/chemistry , Gases/chemistry , Halogens/chemistry , Hydrogen Sulfide/chemistry , Anaerobiosis , Bacteria/metabolism , Sulfur/isolation & purification
15.
J Hazard Mater ; 386: 121916, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884361

ABSTRACT

Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.


Subject(s)
Biofuels/analysis , Bioreactors/microbiology , Disulfides/chemistry , Hydrogen Sulfide/isolation & purification , Microbiota , Sulfates/analysis , Sulfhydryl Compounds/isolation & purification , Aerobiosis , Anaerobiosis , Disulfides/pharmacology , Kinetics , Microbiota/drug effects , Models, Theoretical , Oxidation-Reduction , Sulfur-Reducing Bacteria/growth & development
16.
Water Res X ; 4: 100035, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31334497

ABSTRACT

Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.

17.
Environ Sci Technol ; 53(8): 4519-4527, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30882225

ABSTRACT

In the biotechnological desulfurization process under haloalkaline conditions, dihydrogen sulfide (H2S) is removed from sour gas and oxidized to elemental sulfur (S8) by sulfide-oxidizing bacteria. Besides S8, the byproducts sulfate (SO42-) and thiosulfate (S2O32-) are formed, which consume caustic and form a waste stream. The aim of this study was to increase selectivity toward S8 by a new process line-up for biological gas desulfurization, applying two bioreactors with different substrate conditions (i.e., sulfidic and microaerophilic), instead of one (i.e., microaerophilic). A 111-day continuous test, mimicking full scale operation, demonstrated that S8 formation was 96.6% on a molar H2S supply basis; selectivity for SO42- and S2O32- were 1.4 and 2.0% respectively. The selectivity for S8 formation in a control experiment with the conventional 1-bioreactor line-up was 75.6 mol %. At start-up, the new process line-up immediately achieved lower SO42- and S2O32- formations compared to the 1-bioreactor line-up. When the microbial community adapted over time, it was observed that SO42- formation further decreased. In addition, chemical formation of S2O32- was reduced due to biologically mediated removal of sulfide from the process solution in the anaerobic bioreactor. The increased selectivity for S8 formation will result in 90% reduction in caustic consumption and waste stream formation compared to the 1-bioreactor line-up.


Subject(s)
Bioreactors , Thiosulfates , Oxidation-Reduction , Sulfates , Sulfides , Sulfur
18.
Environ Sci Technol Lett ; 5(8): 495-499, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30135862

ABSTRACT

Biological desulfurization under haloalkaliphilic conditions is a widely applied process, in which haloalkalophilic sulfide-oxidizing bacteria (SOB) oxidize dissolved sulfide with oxygen as the final electron acceptor. We show that these SOB can shuttle electrons from sulfide to an electrode, producing electricity. Reactor solutions from two different biodesulfurization installations were used, containing different SOB communities; 0.2 mM sulfide was added to the reactor solutions with SOB in absence of oxygen, and sulfide was removed from the solution. Subsequently, the reactor solutions with SOB, and the centrifuged reactor solutions without SOB, were transferred to an electrochemical cell, where they were contacted with an anode. Charge recovery was studied at different anode potentials. At an anode potential of +0.1 V versus Ag/AgCl, average current densities of 0.48 and 0.24 A/m2 were measured for the two reactor solutions with SOB. Current was negligible for reactor solutions without SOB. We postulate that these differences in current are related to differences in microbial community composition. Potential mechanisms for charge storage in SOB are proposed. The ability of SOB to shuttle electrons from sulfide to an electrode offers new opportunities for developing a more sustainable desulfurization process.

19.
Environ Sci Technol ; 50(23): 12808-12815, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27934286

ABSTRACT

After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.


Subject(s)
RNA, Ribosomal, 16S , Sulfides , Bioreactors/microbiology , Hydrogen Sulfide/chemistry , Sulfhydryl Compounds/chemistry
20.
Water Res ; 47(2): 483-92, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23177655

ABSTRACT

In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S° formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design.


Subject(s)
Bacterial Proteins/metabolism , Biotechnology/methods , Cytochromes c/metabolism , Hydrogen Sulfide/metabolism , Models, Biological , Natronobacterium/metabolism , Waste Management/methods , Archaeal Proteins/metabolism , Bioreactors/microbiology , Bioreactors/parasitology , Hydrogen Sulfide/analysis , Kinetics , Natronobacterium/enzymology , Natronobacterium/growth & development , Nitrogen Cycle , Oxidation-Reduction , Quinones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...