Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 307, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521929

ABSTRACT

BACKGROUND: Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS: Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS: We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.


Subject(s)
Drosophila , Transcription Factors , Humans , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Drosophila/genetics , Drosophila melanogaster/metabolism , Gene Regulatory Networks , DNA/metabolism , Cell Line
2.
PeerJ ; 11: e15597, 2023.
Article in English | MEDLINE | ID: mdl-37366427

ABSTRACT

The core promoter elements are important DNA sequences for the regulation of RNA polymerase II transcription in eukaryotic cells. Despite the broad evolutionary conservation of these elements, there is extensive variation in the nucleotide composition of the actual sequences. In this study, we aim to improve our understanding of the complexity of this sequence variation in the TATA box and initiator core promoter elements in Drosophila melanogaster. Using computational approaches, including an enhanced version of our previously developed MARZ algorithm that utilizes gapped nucleotide matrices, several sequence landscape features are uncovered, including an interdependency between the nucleotides in position 2 and 5 in the initiator. Incorporating this information in an expanded MARZ algorithm improves predictive performance for the identification of the initiator element. Overall our results demonstrate the need to carefully consider detailed sequence composition features in core promoter elements in order to make more robust and accurate bioinformatic predictions.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Base Sequence , Algorithms , Nucleotides
3.
G3 (Bethesda) ; 13(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-36869676

ABSTRACT

Drosophila melanogaster cell lines are an important resource for a range of studies spanning genomics, molecular genetics, and cell biology. Amongst these valuable lines are Kc167 (Kc) and Schneider 2 (S2) cells, which were originally isolated in the late 1960s from embryonic sources and have been used extensively to investigate a broad spectrum of biological activities including cell-cell signaling and immune system function. Whole-genome tiling microarray analysis of total RNA from these two cell types was performed as part of the modENCODE project over a decade ago and revealed that they share a number of gene expression features. Here, we expand on these earlier studies by using deep-coverage RNA-sequencing approaches to investigate the transcriptional profile in Kc and S2 cells in detail. Comparison of the transcriptomes reveals that ∼75% of the 13,919 annotated genes are expressed at a detectable level in at least one of the cell lines, with the majority of these genes expressed at high levels in both cell lines. Despite the overall similarity of the transcriptional landscape in the two cell types, 2,588 differentially expressed genes are identified. Many of the genes with the largest fold change are known only by their "CG" designations, indicating that the molecular control of Kc and S2 cell identity may be regulated in part by a cohort of relatively uncharacterized genes. Our data also indicate that both cell lines have distinct hemocyte-like identities, but share active signaling pathways and express a number of genes in the network responsible for dorsal-ventral patterning of the early embryo.


Subject(s)
Drosophila , Transcriptome , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , RNA , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL