Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37688563

ABSTRACT

SUMMARY: DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce transcript degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these variants that could exert DN/GOF effects via NMD escape. AVAILABILITY AND IMPLEMENTATION: aenmd is implemented in the R programming language. Code is available on GitHub as an R-package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).


Subject(s)
Codon, Nonsense , Nonsense Mediated mRNA Decay , Humans
2.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993377

ABSTRACT

DNA changes that cause premature termination codons (PTCs) represent a large fraction of clinically relevant pathogenic genomic variation. Typically, PTCs induce a transcript's degradation by nonsense-mediated mRNA decay (NMD) and render such changes loss-of-function alleles. However, certain PTC-containing transcripts escape NMD and can exert dominant-negative or gain-of-function (DN/GOF) effects. Therefore, systematic identification of human PTC-causing variants and their susceptibility to NMD contributes to the investigation of the role of DN/GOF alleles in human disease. Here we present aenmd, a software for annotating PTC-containing transcript-variant pairs for predicted escape from NMD. aenmd is user-friendly and self-contained. It offers functionality not currently available in other methods and is based on established and experimentally validated rules for NMD escape; the software is designed to work at scale, and to integrate seamlessly with existing analysis workflows. We applied aenmd to variants in the gnomAD, Clinvar, and GWAS catalog databases and report the prevalence of human PTC-causing variants in these databases, and the subset of these that could exert DN/GOF effects via NMD escape. Availability and implementation: aenmd is implemented in the R programming language. Code is available on GitHub as an R package (github.com/kostkalab/aenmd.git), and as a containerized command-line interface (github.com/kostkalab/aenmd_cli.git).

3.
HGG Adv ; 2(3)2021 07 08.
Article in English | MEDLINE | ID: mdl-34888534

ABSTRACT

Bicuspid aortic valve (BAV) with ~1%-2% prevalence is the most common congenital heart defect (CHD). It frequently results in valve disease and aorta dilation and is a major cause of adult cardiac surgery. BAV is genetically linked to rare left-heart obstructions (left ventricular outflow tract obstructions [LVOTOs]), including hypoplastic left heart syndrome (HLHS) and coarctation of the aorta (CoA). Mouse and human studies indicate LVOTO is genetically heterogeneous with a complex genetic etiology. Homozygous mutation in the Pcdha protocadherin gene cluster in mice can cause BAV, and also HLHS and other LVOTO phenotypes when accompanied by a second mutation. Here we show two common deletion copy number variants (delCNVs) within the PCDHA gene cluster are associated with LVOTO. Analysis of 1,218 white individuals with LVOTO versus 463 disease-free local control individuals yielded odds ratios (ORs) at 1.47 (95% confidence interval [CI], 1.13-1.92; p = 4.2 × 10-3) for LVOTO, 1.47 (95% CI, 1.10-1.97; p = 0.01) for BAV, 6.13 (95% CI, 2.75-13.7; p = 9.7 × 10-6) for CoA, and 1.49 (95% CI, 1.07-2.08; p = 0.019) for HLHS. Increased OR was observed for all LVOTO phenotypes in homozygous or compound heterozygous PCDHA delCNV genotype comparison versus wild type. Analysis of an independent white cohort (381 affected individuals, 1,352 control individuals) replicated the PCDHA delCNV association with LVOTO. Generalizability of these findings is suggested by similar observations in Black and Chinese individuals with LVOTO. Analysis of Pcdha mutant mice showed reduced PCDHA expression at regions of cell-cell contact in aortic smooth muscle and cushion mesenchyme, suggesting potential mechanisms for BAV pathogenesis and aortopathy. Together, these findings indicate common variants causing PCDHA deficiency play a significant role in the genetic etiology of common and rare LVOTO-CHD.

SELECTION OF CITATIONS
SEARCH DETAIL
...