Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(5): 8447-8458, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439500

ABSTRACT

Field-effect transistors are capable of detecting electromagnetic radiation from less than 100 GHz up to very high frequencies reaching well into the infrared spectral range. Here, we report on frequency coverage of up to 30THz, thus reaching the technologically important frequency regime of CO2 lasers, using GaAs/AlGaAs high-electron-mobility transistors. A detailed study of the speed and polarization dependence of the responsivity allows us to identify a cross over of the dominant detection mechanism from ultrafast non-quasistatic rectification at low Terahertz frequencies to slow rectification based on a combination of the Seebeck and bolometric effects at high frequencies, occurring at about the boundary between the Terahertz frequency range and the infrared at 10THz.

2.
ACS Nano ; 17(19): 19313-19322, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37738305

ABSTRACT

The terahertz (THz) frequency range is key to studying collective excitations in many crystals and organic molecules. However, due to the large wavelength of THz radiation, the local probing of these excitations in smaller crystalline structures or few-molecule arrangements requires sophisticated methods to confine THz light down to the nanometer length scale, as well as to manipulate such a confined radiation. For this purpose, in recent years, taking advantage of hyperbolic phonon polaritons (HPhPs) in highly anisotropic van der Waals (vdW) materials has emerged as a promising approach, offering a multitude of manipulation options, such as control over the wavefront shape and propagation direction. Here, we demonstrate the THz application of twist-angle-induced HPhP manipulation, designing the propagation of confined THz radiation between 8.39 and 8.98 THz in the vdW material α-molybdenum trioxide (α-MoO3), hence extending twistoptics to this intriguing frequency range. Our images, recorded by near-field optical microscopy, show the frequency- and twist-angle-dependent changes between hyperbolic and elliptic polariton propagation, revealing a polaritonic transition at THz frequencies. As a result, we are able to allocate canalization (highly collimated propagation) of confined THz radiation by carefully adjusting these two parameters, i.e. frequency and twist angle. Specifically, we report polariton canalization in α-MoO3 at 8.67 THz for a twist angle of 50°. Our results demonstrate the precise control and manipulation of confined collective excitations at THz frequencies, particularly offering possibilities for nanophotonic applications.

3.
Sensors (Basel) ; 23(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37050531

ABSTRACT

We present the characterization of a Zero-bias Schottky diode-based Terahertz (THz) detector up to 5.56 THz. The detector was operated with both a table-top system until 1.2 THz and at a Free-Electron Laser (FEL) facility at singular frequencies from 1.9 to 5.56 THz. We used two measurement techniques in order to discriminate the sub-ns-scale (via a 20 GHz oscilloscope) and the ms-scale (using the lock-in technique) responsivity. While the lock-in measurements basically contain all rectification effects, the sub-ns-scale detection with the oscilloscope is not sensitive to slow bolometric effects caused by changes of the IV characteristic due to temperature. The noise equivalent power (NEP) is 10 pW/Hz in the frequency range from 0.2 to 0.6 THz and 17 pW/Hz at 1.2 THz and increases to 0.9 µW/Hz at 5.56 THz, which is at the state of the art for room temperature zero-bias Schottky diode-based THz detectors with non-resonant antennas. The voltage and current responsivity of ∼500 kV/W and ∼100 mA/W, respectively, is demonstrated over a frequency range of 0.2 to 1.2 THz with the table-top system.

4.
ACS Nano ; 16(12): 20174-20185, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36446407

ABSTRACT

Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.

5.
Phys Chem Chem Phys ; 24(21): 13413-13415, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35594164

ABSTRACT

As outlined in our paper, we developed a model which is able to explain all recorded THz pump-probe data at 12.3 THz in the static water cell as well as in the liquid jet. The model includes an instantaneous temperature-dependent response by an acoustic phonon, an inherent non-linear response of water, and a slower thermal response. The order of magnitude of the non-linear contributions agrees with previous experimental results by us2 and other groups (see ref. 32, 33 and 35 in ref. 1) as well as with simulations2, which predict an enhanced non-linear response of water in the frequency range of the libration.

6.
Phys Chem Chem Phys ; 24(2): 653-665, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34570144

ABSTRACT

The dynamical complexity of the hydrogen-bonded water network can be investigated with intense Terahertz (THz) spectroscopy, which can drive the liquid into the nonlinear response regime and probe anharmonicity effects. Here we report single-color and polarization-dependent pump-probe experiments at 12.3 THz on liquid water, exciting the librational mode. By comparing results obtained on a static sample and a free-flowing water jet, we are able to disentangle the distinct contributions by thermal, acoustic, and nonlinear optical effects. We show that the transient transmission by the static water layer on a time scale of hundreds of microseconds can be described by thermal (slow) and acoustic (temperature-dependent) effects. In addition, during pump probe overlap we observe an anisotropic nonlinear optical response. This nonlinear signal is more prominent in the liquid jet than in the static cell, where temperature and density perturbations are more pronounced. Our measurements confirm that the THz excitation resonates with the rotationally-damped motion of water molecules, resulting in enhanced transient anisotropy. This model can be used to explain the non-linear response of water in the frequency range between about 1 and 20 THz.

7.
Nano Lett ; 21(21): 9012-9020, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34665620

ABSTRACT

Chalcogenide phase change materials reversibly switch between non-volatile states with vastly different optical properties, enabling novel active nanophotonic devices. However, a fundamental understanding of their laser-switching behavior is lacking and the resulting local optical properties are unclear at the nanoscale. Here, we combine infrared scattering-type scanning near-field optical microscopy (SNOM) and Kelvin probe force microscopy (KPFM) to investigate four states of laser-switched Ge3Sb2Te6 (as-deposited amorphous, crystallized, reamorphized, and recrystallized) with nanometer lateral resolution. We find SNOM to be especially sensitive to differences between crystalline and amorphous states, while KPFM has higher sensitivity to changes introduced by melt-quenching. Using illumination from a free-electron laser, we use the higher sensitivity to free charge carriers of far-infrared (THz) SNOM compared to mid-infrared SNOM and find evidence that the local conductivity of crystalline states depends on the switching process. This insight into the local switching of optical properties is essential for developing active nanophotonic devices.

8.
Nat Commun ; 12(1): 1995, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33790286

ABSTRACT

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

9.
Adv Mater ; 33(2): e2005777, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33270287

ABSTRACT

Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation confinement is conventionally achieved with specially designed metallic structures-such as antennas or nanoslits-with large footprints due to the rather long wavelengths of THz radiation. In this context, phonon polaritons-light coupled to lattice vibrations-in van der Waals (vdW) crystals have emerged as a promising solution for controlling light beyond the diffraction limit, as they feature extreme field confinements and low optical losses. However, experimental demonstration of nanoscale-confined phonon polaritons at THz frequencies has so far remained elusive. Here, it is provided by employing scattering-type scanning near-field optical microscopy combined with a free-electron laser to reveal a range of low-loss polaritonic excitations at frequencies from 8 to 12 THz in the vdW semiconductor α-MoO3 . In this study, THz polaritons are visualized with: i) in-plane hyperbolic dispersion, ii) extreme nanoscale field confinement (below λo  /75), and iii) long polariton lifetimes, with a lower limit of >2 ps.

10.
Sci Rep ; 7: 44335, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290545

ABSTRACT

Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD) and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.

11.
Appl Opt ; 49(17): 3239-44, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20539339

ABSTRACT

By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

12.
Appl Opt ; 46(11): 2076-83, 2007 Apr 10.
Article in English | MEDLINE | ID: mdl-17384723

ABSTRACT

The reduction in size and the increase in speed of opto- and magnetoelectronic devices is making the probability of nonequilibrium electron-phonon phenomena greater, leading to increased thermal resistance in these devices. The measurement of electron-phonon coupling in materials in these devices is becoming increasingly important for accurate thermal management. Here femtosecond thermoreflectance is used to measure the electron-phonon coupling factor in thin Ni films of varying thickness grown on Si and glass substrates. The thermoreflectance response is measured at 1.3 and 1.55 eV, yielding drastically different responses due to the Fermi-level transition at 1.3 eV in Ni. The influence of this transition on the thermoreflectance response results in a measurement of the electron-phonon coupling factor that is twice as high as that recorded in previous measurements that were unaffected by the Fermi-level transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...