Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1367366, 2024.
Article in English | MEDLINE | ID: mdl-38737540

ABSTRACT

Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable. Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days. Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells. Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry.

2.
Front Bioeng Biotechnol ; 10: 1021827, 2022.
Article in English | MEDLINE | ID: mdl-36466340

ABSTRACT

Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.

3.
Curr Res Microb Sci ; 3: 100156, 2022.
Article in English | MEDLINE | ID: mdl-36518174

ABSTRACT

The prevention of implant infections is a major challenge for implant developers and clinicians. Understanding biofilm dynamics and favorable implant or environmental characteristics will help to prevent biofilm formation. Blood-contact implants, such as cardiovascular implants, are particularly susceptible to infections as the blood provides a favorable growth environment for bacteria due to its rich supply of micro- and macro substances, such as glucose and plasma proteins. In this context, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis are the most reported causes accompanying foreign body-associated infections, mainly due to their ability to form an adherent, multilayered bacterial biofilm on a wide variety of surfaces. The present study demonstrates that the provision of glucose and human plasma to the growth medium or coating of the flask with human plasma differentially affects the biofilm formation of these three bacterial species, with human plasma being the most effective regulator. However, glucose supplementation promoted and stabilized biofilm formation of S. aureus and E. faecalis, while an opposite effect was observed for additional plasma. These findings highlight the urgent need to intensify studies on the impact of host soluble factors as risk factors promoting fitness and persistence of bacterial biofilms.

4.
Front Cell Infect Microbiol ; 12: 868338, 2022.
Article in English | MEDLINE | ID: mdl-35651751

ABSTRACT

Biofilm-associated implant infections represent a major challenge for healthcare systems around the world due to high patient burden and enormous costs incurred. Enterococcus faecalis (E. faecalis) is the most prevalent enterococcal species identified in biofilm-associated infections. The steadily growing areas of application of implants demand a solution for the control of bacterial infections. Therefore, the development of modified anti-microbial implant materials and the testing of the behavior of different relevant bacterial strains towards them display an indispensable task. Recently, we demonstrated an anti-microbial effect of zwitterionic modified silicone rubber (LSR) against Staphylococcus aureus. The aim of this study was to evaluate bacterial colonization and biofilm formation of another clinically relevant strain, E. faecalis, on this material in comparison to two of the most commonly used thermoplastic polyurethanes (TPUs) and other modified LSR surfaces. By generating growth curves, crystal violet, and fluorescence staining, as well as analyzing the expression of biofilm-associated genes, we demonstrated no anti-microbial activity of the investigated materials against E. faecalis. These results point to the fact that anti-microbial effects of novel implant materials do not always apply across the board to all bacterial strains.


Subject(s)
Bacterial Adhesion , Enterococcus faecalis , Bacteria , Biofilms , Humans , Polymers , Sulfones/metabolism
5.
Biomedicines ; 9(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34680581

ABSTRACT

Medical device-related infections are becoming a steadily increasing challenge for the health care system regarding the difficulties in the clinical treatment. In particular, cardiovascular implant infections, catheter-related infections, as well as infective endocarditis are associated with high morbidity and mortality risks for the patients. Antimicrobial materials may help to prevent medical device-associated infections and supplement the currently available therapies. In this study, we present an easy-to-handle and simplified in vivo model to test antimicrobial materials in the bloodstream of mice. The model system is composed of the implantation of a bacteria-laden micro-stent scaffold into the murine tail vein. Our model enables the simulation of catheter-related infections as well as the development of infective endocarditis specific pathologies in combination with material testing. Furthermore, this in vivo model can cover two phases of the biofilm formation, including both the local tissue response to the bacterial biofilm and the systemic inflammatory response against circulating bacteria in the bloodstream that detached from a mature biofilm.

6.
Materials (Basel) ; 14(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683562

ABSTRACT

The biocompatibility of medical devices, such as implants and prostheses, is strongly determined by the host's immune response to the implanted material. Monocytes and macrophages are main actors of the so-called foreign body reaction. The innate immune system macrophages (M) can be broadly classified into the pro-inflammatory M1-type and the anti-inflammatory, pro-healing M2-type. While a transient inflammatory initial state can be helpful during an infection, persistent inflammation interferes with proper healing and subsequent regeneration. The functional orientation of the immune response, mirrored by monocyte polarization, during interaction with different biomaterials has not yet been sufficiently explored. In implant manufacturing, thermoplastic polyurethane (TPU) represents the state-of-the-art material. The constantly growing areas of application and the associated necessary adaptations make the optimization of these materials indispensable. In the present study, modified liquid silicone rubber (LSR) were compared with two of the most commonly used TPUs, in terms of monocyte adhesion and M1/M2 polarization in vitro. Human monocytes isolated from venous blood were evaluated for their ability to adhere to various biomaterials, their gene expression profile, and their cytokine release. Based on the results, the different polymers exhibit different potential to bias monocytes with respect to early pro-inflammatory cytokine production and gene transcription. Furthermore, none of our test materials showed a clear trend towards M1 or M2 polarization. However, we were able to evaluate the inflammatory potential of the materials, with the classic TPUs appearing to be the most unreactive compared to the silicone-based materials.

7.
Front Bioeng Biotechnol ; 9: 686192, 2021.
Article in English | MEDLINE | ID: mdl-34249887

ABSTRACT

In recent decades, biofilm-associated infections have become a major problem in many medical fields, leading to a high burden on patients and enormous costs for the healthcare system. Microbial infestations are caused by opportunistic pathogens which often enter the incision already during implantation. In the subsequently formed biofilm bacteria are protected from the hosts immune system and antibiotic action. Therefore, the development of modified, anti-microbial implant materials displays an indispensable task. Thermoplastic polyurethane (TPU) represents the state-of-the-art material in implant manufacturing. Due to the constantly growing areas of application and the associated necessary adjustments, the optimization of these materials is essential. In the present study, modified liquid silicone rubber (LSR) surfaces were compared with two of the most commonly used TPUs in terms of bacterial colonization and biofilm formation. The tests were conducted with the clinically relevant bacterial strains Staphylococcus aureus and Staphylococcus epidermidis. Crystal violet staining and scanning electron microscopy showed reduced adhesion of bacteria and thus biofilm formation on these new materials, suggesting that the investigated materials are promising candidates for implant manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL
...