Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Nat Commun ; 15(1): 4120, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750052

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Subject(s)
Brain , Killer Cells, Natural , Motor Neurons , Muscular Atrophy, Spinal , Oligonucleotides , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/genetics , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Brain/pathology , Brain/drug effects , Female , Male , Survival of Motor Neuron 2 Protein/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Single-Cell Analysis , Cytotoxicity, Immunologic/drug effects , Infant , Child, Preschool , Child , Transcriptome
3.
Sci Transl Med ; 16(740): eade8560, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536936

ABSTRACT

One of the biggest challenges in managing multiple sclerosis is the heterogeneity of clinical manifestations and progression trajectories. It still remains to be elucidated whether this heterogeneity is reflected by discrete immune signatures in the blood as a surrogate of disease pathophysiology. Accordingly, individualized treatment selection based on immunobiological principles is still not feasible. Using two independent multicentric longitudinal cohorts of patients with early multiple sclerosis (n = 309 discovery and n = 232 validation), we were able to identify three distinct peripheral blood immunological endophenotypes by a combination of high-dimensional flow cytometry and serum proteomics, followed by unsupervised clustering. Longitudinal clinical and paraclinical follow-up data collected for the cohorts revealed that these endophenotypes were associated with disease trajectories of inflammation versus early structural damage. Investigating the capacity of immunotherapies to normalize endophenotype-specific immune signatures revealed discrete effect sizes as illustrated by the limited effect of interferon-ß on endophenotype 3-related immune signatures. Accordingly, patients who fell into endophenotype 3 subsequently treated with interferon-ß exhibited higher disease progression and MRI activity over a 4-year follow-up compared with treatment with other therapies. We therefore propose that ascertaining a patient's blood immune signature before immunomodulatory treatment initiation may facilitate prediction of clinical disease trajectories and enable personalized treatment decisions based on pathobiological principles.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Endophenotypes , Interferon-beta/therapeutic use
4.
Ann Neurol ; 95(4): 720-732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086777

ABSTRACT

OBJECTIVE: To investigate accumulation of disability in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) in a changing treatment landscape. We aimed to identify risk factors for the development of disability milestones in relation to disease duration, number of attacks, and age. METHODS: We analyzed data from individuals with NMOSD and MOGAD from the German Neuromyelitis Optica Study Group registry. Applying survival analyses, we estimated risk factors and computed time to disability milestones as defined by the Expanded Disability Status Score (EDSS). RESULTS: We included 483 patients: 298 AQP4-IgG+ NMOSD, 52 AQP4-IgG-/MOG-IgG- NMOSD patients, and 133 patients with MOGAD. Despite comparable annualized attack rates, disability milestones occurred earlier and after less attacks in NMOSD patients than MOGAD patients (median time to EDSS 3: AQP4-IgG+ NMOSD 7.7 (95% CI 6.6-9.6) years, AQP4-IgG-/MOG-IgG- NMOSD 8.7) years, MOGAD 14.1 (95% CI 10.4-27.6) years; EDSS 4: 11.9 (95% CI 9.7-14.7), 11.6 (95% lower CI 7.6) and 20.4 (95% lower CI 14.1) years; EDSS 6: 20.1 (95% CI 16.5-32.1), 20.7 (95% lower CI 11.6), and 37.3 (95% lower CI 29.4) years; and EDSS 7: 34.2 (95% lower CI 31.1) for AQP4-IgG+ NMOSD). Higher age at onset increased the risk for all disability milestones, while risk of disability decreased over time. INTERPRETATION: AQP4-IgG+ NMOSD, AQP4-IgG-/MOG-IgG- NMOSD, and MOGAD patients show distinctive relapse-associated disability progression, with MOGAD having a less severe disease course. Investigator-initiated research has led to increasing awareness and improved treatment strategies appearing to ameliorate disease outcomes for NMOSD and MOGAD. ANN NEUROL 2024;95:720-732.


Subject(s)
Neuromyelitis Optica , Humans , Aquaporin 4 , Myelin-Oligodendrocyte Glycoprotein , Autoantibodies , Immunoglobulin G , Recurrence
5.
J Neurol ; 271(1): 141-176, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676297

ABSTRACT

This manuscript presents practical recommendations for managing acute attacks and implementing preventive immunotherapies for neuromyelitis optica spectrum disorders (NMOSD), a rare autoimmune disease that causes severe inflammation in the central nervous system (CNS), primarily affecting the optic nerves, spinal cord, and brainstem. The pillars of NMOSD therapy are attack treatment and attack prevention to minimize the accrual of neurological disability. Aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) are a diagnostic marker of the disease and play a significant role in its pathogenicity. Recent advances in understanding NMOSD have led to the development of new therapies and the completion of randomized controlled trials. Four preventive immunotherapies have now been approved for AQP4-IgG-positive NMOSD in many regions of the world: eculizumab, ravulizumab - most recently-, inebilizumab, and satralizumab. These new drugs may potentially substitute rituximab and classical immunosuppressive therapies, which were as yet the mainstay of treatment for both, AQP4-IgG-positive and -negative NMOSD. Here, the Neuromyelitis Optica Study Group (NEMOS) provides an overview of the current state of knowledge on NMOSD treatments and offers statements and practical recommendations on the therapy management and use of all available immunotherapies for this disease. Unmet needs and AQP4-IgG-negative NMOSD are also discussed. The recommendations were developed using a Delphi-based consensus method among the core author group and at expert discussions at NEMOS meetings.


Subject(s)
Neuromyelitis Optica , Humans , Neuromyelitis Optica/therapy , Neuromyelitis Optica/drug therapy , Aquaporin 4 , Spinal Cord , Central Nervous System , Autoantibodies , Immunoglobulin G
6.
Ther Adv Neurol Disord ; 16: 17562864231211077, 2023.
Article in English | MEDLINE | ID: mdl-38084102

ABSTRACT

Background: Cladribine is a highly effective immunotherapy that is applied in two short-term courses over 2 years and reduces relapse rate and disease progression in patients with relapsing multiple sclerosis (MS). Despite the short treatment period, cladribine has a long-lasting effect on disease activity even after recovery of lymphocyte counts, suggesting a yet undefined long-term immune modulating effect. Objectives: Our aim was to provide a more profound understanding of the detailed effects of cladribine, also with regard to the patients' therapy response. Design: We performed an open-labeled, explorative, prospective, single-arm study, in which we examined the detailed lymphocyte subset development of MS patients who received cladribine treatment over 2 years. Methods: We performed in-depth profiling of the effects of cladribine on peripheral blood lymphocytes by flow cytometry, bulk RNA sequencing of sorted CD4+ T cells, CD8+ T cells, and CD19+ B cells as well as single-cell RNA sequencing of peripheral blood mononuclear cells in a total of 23 MS patients before and at different time points up to 24 months after cladribine treatment. Data were correlated with clinical and cranial magnetic resonance imaging (MRI) disease activity. Results: Flow cytometry revealed a predominant and sustained reduction of memory B cells compared to other B cell subsets after cladribine treatment, whereas T cell subsets were slightly reduced in a more uniform pattern. The overall transcriptional profile of total blood B cells exhibited reduced expression of proinflammatory and T cell activating genes, while single-cell transcriptomics revealed that gene expression within each B cell cluster did not change over time. Stable patients displayed stronger reductions of selected memory B cell clusters as compared to patients with clinical or cerebral MRI disease activity. Conclusion: We describe a pronounced and sustained effect of cladribine on the memory B cell compartment, and the resulting change in B cell subset composition causes a significant alteration of B cell transcriptional profiles resulting in reduced proinflammatory and T cell activating capacities. The extent of reduction in selected memory B cell clusters by cladribine may predict treatment response.

7.
Article in English | MEDLINE | ID: mdl-38115607

ABSTRACT

Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.

8.
Int J Mol Sci ; 24(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958787

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease causing axonal degeneration and demyelination. Exercise in mice with active monophasic experimental autoimmune encephalomyelitis (EAE) attenuates disease severity associated with diverse impacts on T cell-mediated immunity. However, studies have so far focused on preventive approaches. In this study, we investigated the impact of endurance exercise on established EAE disease in a model of secondary progressive MS. When the exercise program on motorized running wheels was started at disease manifestation, the disease course was significantly ameliorated. This was associated with a significant decrease in B cell, dendritic cell, and neutrophil cell counts in the central nervous system (CNS). Furthermore, we observed an increased expression of major histocompatibility complex class II (MHC-II) as well as alterations in costimulatory molecule expression in CNS B cells and dendritic cells. In contrast, T cell responses were not altered in the CNS or periphery. Thus, exercise training is capable of attenuating the disease course even in established secondary progressive EAE, potentially via modulation of the innate immune compartment. Further studies are warranted to corroborate our findings and assess the potential of this lifestyle intervention as a complementary therapeutic strategy in secondary progressive MS patients.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Inbred NOD , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Immunity, Innate , Exercise Therapy
9.
Gut ; 73(1): 92-104, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37595983

ABSTRACT

OBJECTIVE: Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN: EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS: Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS: Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.


Subject(s)
Multiple Sclerosis , Humans , Animals , Mice , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Triticum/chemistry , Amylases , Leukocytes, Mononuclear , Mice, Inbred C57BL , Inflammation , Central Nervous System , Glutens , Diet
10.
Br J Haematol ; 202(5): 1033-1048, 2023 09.
Article in English | MEDLINE | ID: mdl-37423893

ABSTRACT

Growth factor independence 1 (GFI1) is a transcriptional repressor protein that plays an essential role in the differentiation of myeloid and lymphoid progenitors. We and other groups have shown that GFI1 has a dose-dependent role in the initiation, progression, and prognosis of acute myeloid leukaemia (AML) patients by inducing epigenetic changes. We now demonstrate a novel role for dose-dependent GFI1 expression in regulating metabolism in haematopoietic progenitor and leukaemic cells. Using in-vitro and ex-vivo murine models of MLL::AF9-induced human AML and extra-cellular flux assays, we now demonstrate that a lower GFI1 expression enhances oxidative phosphorylation rate via upregulation of the FOXO1- MYC axis. Our findings underscore the significance of therapeutic exploitation in GFI1-low-expressing leukaemia cells by targeting oxidative phosphorylation and glutamine metabolism.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Cell Differentiation , Prognosis , Epigenesis, Genetic , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
11.
Nat Rev Neurol ; 19(8): 477-488, 2023 08.
Article in English | MEDLINE | ID: mdl-37430070

ABSTRACT

Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Neurons/physiology , Disease Progression , Cytokines , Inflammation/pathology
12.
PLoS Pathog ; 19(7): e1010986, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37440521

ABSTRACT

Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.


Subject(s)
Influenza A virus , Influenza A virus/genetics , Virus Replication/physiology , Transcription, Genetic , Nucleotidyltransferases/metabolism , Genomics , Glycolysis , RNA, Viral/genetics , RNA, Viral/metabolism
13.
J Comp Eff Res ; 12(7): e230016, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37265062

ABSTRACT

Aim: To assess the relative efficacy of disease-modifying therapies (DMTs) for relapsing multiple sclerosis (RMS) including newer therapies (ozanimod, ponesimod, ublituximab) using network meta-analysis (NMA). Materials & methods: Bayesian NMAs for annualised relapse rate (ARR) and time to 3-month and 6-month confirmed disability progression (3mCDP and 6mCDP) were conducted. Results: For each outcome, the three most efficacious treatments versus placebo were monoclonal antibody (mAb) therapies: alemtuzumab, ofatumumab, and ublituximab for ARR; alemtuzumab, ocrelizumab, and ofatumumab for 3mCDP; and alemtuzumab, natalizumab, and either ocrelizumab or ofatumumab (depending on the CDP definition used for included ofatumumab trials) for 6mCDP. Conclusion: The most efficacious DMTs for RMS were mAb therapies. Of the newer therapies, only ublituximab ranked among the three most efficacious treatments (for ARR).


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Alemtuzumab/therapeutic use , Network Meta-Analysis , Bayes Theorem , Recurrence
14.
Ther Adv Neurol Disord ; 16: 17562864231170928, 2023.
Article in English | MEDLINE | ID: mdl-37384112

ABSTRACT

Background: Western lifestyle has been associated with an increase in relapsing-remitting multiple sclerosis (RRMS). In mice, dietary wheat amylase-trypsin inhibitors (ATIs) activate intestinal myeloid cells and augment T cell-mediated systemic inflammation. Objective: The aim of this study was to assess whether a wheat- and thus ATI-reduced diet might exert beneficial effects in RRMS patients with modest disease activity. Methods: In this 6-month, crossover, open-label, bicentric proof-of-concept trial, 16 RRMS patients with stable disease course were randomized to either 3 months of a standard wheat-containing diet with consecutive switch to a > 90% wheat-reduced diet, or vice versa. Results: The primary endpoint was negative, as the frequency of circulating pro-inflammatory T cells did not decrease during the ATI-reduced diet. We did, however, observe decreased frequencies of CD14+ CD16++ monocytes and a concomitant increase in CD14++ CD16- monocytes during the wheat-reduced diet interval. This was accompanied by an improvement in pain-related quality of life in health-related quality of life assessed (SF-36). Conclusion: Our results suggest that the wheat- and thus ATI-reduced diet was associated with changes in monocyte subsets and improved pain-related quality of life in RRMS patients. Thus, a wheat (ATI)-reduced diet might be a complementary approach accompanying immunotherapy for some patients. Registration: German Clinical Trial Register (No. DRKS00027967).

15.
Nat Rev Neurol ; 19(5): 305-320, 2023 05.
Article in English | MEDLINE | ID: mdl-37059811

ABSTRACT

Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.


Subject(s)
Multiple Sclerosis , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathology , Humans , Animals , Nerve Fibers, Myelinated , Axons , Inflammation/drug therapy , Disease Models, Animal , Clinical Trials as Topic , Translational Science, Biomedical
16.
J Neurol ; 270(7): 3341-3368, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37022481

ABSTRACT

The term 'neuromyelitis optica spectrum disorders' (NMOSD) is used as an umbrella term that refers to aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica (NMO) and its formes frustes and to a number of closely related clinical syndromes without AQP4-IgG. NMOSD were originally considered subvariants of multiple sclerosis (MS) but are now widely recognized as disorders in their own right that are distinct from MS with regard to immunopathogenesis, clinical presentation, optimum treatment, and prognosis. In part 1 of this two-part article series, which ties in with our 2014 recommendations, the neuromyelitis optica study group (NEMOS) gives updated recommendations on the diagnosis and differential diagnosis of NMOSD. A key focus is on differentiating NMOSD from MS and from myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD), which shares significant similarity with NMOSD with regard to clinical and, partly, radiological presentation, but is a pathogenetically distinct disease. In part 2, we provide updated recommendations on the treatment of NMOSD, covering all newly approved drugs as well as established treatment options.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/therapy , Diagnosis, Differential , Myelin-Oligodendrocyte Glycoprotein , Aquaporin 4 , Multiple Sclerosis/diagnosis , Multiple Sclerosis/therapy , Immunoglobulin G , Autoantibodies
17.
Autoimmun Rev ; 22(5): 103312, 2023 May.
Article in English | MEDLINE | ID: mdl-36924922

ABSTRACT

More than 10 disease-modifying therapies (DMT) are approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) and new therapeutic options are on the horizon. Due to different underlying therapeutic mechanisms, a more individualized selection of DMTs in MS is possible, taking into account the patient's current situation. Therefore, concomitant treatment of various comorbid conditions, including autoimmune mediated disorders such as rheumatoid arthritis, should be considered in MS patients. Because the pathomechanisms of autoimmunity partially overlap, DMT could also treat concomitant inflammatory diseases and simplify the patient's treatment. In contrast, the exacerbation and even new occurrence of several autoimmune diseases have been reported as a result of immunomodulatory treatment of MS. To simplify treatment and avoid disease exacerbation, knowledge of the beneficial and adverse effects of DMT in other autoimmune disorders is critical. Therefore, we conducted a literature search and described the beneficial and adverse effects of approved and currently studied DMT in a large number of comorbid autoimmune diseases, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel diseases, cutaneous disorders including psoriasis, Sjögren´s syndrome, systemic lupus erythematosus, systemic vasculitis, autoimmune hepatitis, and ocular autoimmune disorders. Our review aims to facilitate the selection of an appropriate DMT in patients with MS and comorbid autoimmune diseases.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Lupus Erythematosus, Systemic , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy , Multiple Sclerosis/epidemiology , Autoimmunity , Autoimmune Diseases/complications , Autoimmune Diseases/drug therapy
18.
Mult Scler ; 29(7): 819-831, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36786424

ABSTRACT

BACKGROUND: There is limited and inconsistent information on the prevalence of cognitive impairment in neuromyelitis optica spectrum disorders (NMOSD). OBJECTIVE: To assess cognitive performance and changes over time in NMOSD. METHODS: This study included data from 217 aquaporin-4-IgG-seropositive (80%) and double-seronegative NMOSD patients. Cognitive functions measured by Symbol Digit Modalities Test (SDMT), Paced Auditory Serial-Addition Task (PASAT), and/or Multiple Sclerosis Inventory Cognition (MuSIC) were standardized against normative data (N = 157). Intraindividual cognitive performance at 1- and 2-year follow-up was analyzed. Cognitive test scores were correlated with demographic and clinical variables and assessed with a multiple linear regression model. RESULTS: NMOSD patients were impaired in SDMT (p = 0.007), MuSIC semantic fluency (p < 0.001), and MuSIC congruent speed (p < 0.001). No significant cognitive deterioration was found at follow-up. SDMT scores were related to motor and visual disability (pBon < 0.05). No differences were found between aquaporin-4-IgG-seropositive and double-seronegative NMOSD. CONCLUSIONS: A subset of NMOSD patients shows impairment in visual processing speed and in semantic fluency regardless of serostatus, without noticeable changes during a 2-year observation period. Neuropsychological measurements should be adapted to physical and visual disabilities.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Neuromyelitis Optica/complications , Neuromyelitis Optica/epidemiology , Prospective Studies , Aquaporin 4 , Cognition , Immunoglobulin G , Autoantibodies
19.
Article in English | MEDLINE | ID: mdl-36693760

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate the effects of the coronavirus disease 2019 (COVID-19) pandemic on the life of patients with neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD). METHODS: This multicenter, cross-sectional study included data of 187 patients recruited from 19 different German and Austrian Neuromyelitis Optica Study Group (NEMOS) centers between July 2021 and March 2022. The effects of the pandemic on immunotherapeutic treatment and access to care, the possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of vaccination against SARS-CoV-2 on disease incidence and relapse risk were assessed using a patient questionnaire. Health-related quality of life (HRQoL) was measured with the EuroQoL Group 5-Dimension 5-Level Scale (EQ-5D-5L). Demographic and clinical characteristics were retrieved from the NEMOS database. RESULTS: One hundred eighty-seven patients (75% women; median age 47 [range 21-86] years; median disease duration 5.5 [range 0-67] years; median Expanded Disability Status Scale 2.0 [range 0-8.0]; 51% aquaporin-4 immunoglobulin G (AQP4-IgG)-positive, 36% myelin oligodendrocyte glycoprotein (MOG)-IgG-positive 13% double-seronegative) were analyzed. Most patients maintained excellent access to healthcare services throughout the pandemic. Immunotherapy was not changed in 88% of patients. Ninety-one percent of all patients were satisfied with medical care during the pandemic. Nearly two-thirds (64%) of patients rated their risk of infection with SARS-CoV-2 as low or moderate. Among this study sample, 23 patients (12%) knowingly acquired an infection with SARS-CoV-2 and predominantly had a nonsevere course of illness (n = 22/23, 96%). The SARS-CoV-2 vaccination rate was 89%, with 4 cases of confirmed attack or first manifestation of NMOSD/MOGAD occurring in temporal association with the vaccination (range 2-9 days). The reported HRQoL did not decline compared with a prepandemic assessment (mean EQ-5D-5L index value 0.76, 95% bootstrap confidence interval [CI] 0.72-0.80; mean EQ-VAS 66.5, 95% bootstrap CI 63.5-69.3). DISCUSSION: This study demonstrates that, overall, patients with NMOSD/MOGAD affiliated with specialized centers received ongoing medical care during the pandemic. Patients' satisfaction with medical care and HRQoL did not decrease.


Subject(s)
COVID-19 , Neuromyelitis Optica , Humans , Female , Male , Neuromyelitis Optica/epidemiology , Neuromyelitis Optica/therapy , Pandemics , Myelin-Oligodendrocyte Glycoprotein , Cross-Sectional Studies , COVID-19 Vaccines , Quality of Life , COVID-19/epidemiology , SARS-CoV-2 , Immunoglobulin G
20.
Glia ; 71(4): 991-1001, 2023 04.
Article in English | MEDLINE | ID: mdl-36511515

ABSTRACT

Multiple sclerosis (MS) is a focal inflammatory and demyelinating disease. The inflammatory infiltrates consist of macrophages/microglia, T and B cells. Remyelination (RM) is an endogenous repair process which frequently fails in MS patients. In earlier studies, T cells either promoted or impaired RM. Here, we used the combined cuprizone/MOG-EAE model to further dissect the functional role of T cells for RM. The combination of MOG immunization with cuprizone feeding targeted T cells to the corpus callosum and increased the extent of axonal injury. Global gene expression analyses demonstrated significant changes in the inflammatory environment; however, additional MOG immunization did not alter the course of RM. Our results suggest that the inflammatory environment in the combined model affects axons and oligodendrocytes differently and that oligodendroglial lineage cells might be less susceptible to T cell mediated injury.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Remyelination , Animals , Mice , Axons , Corpus Callosum/metabolism , Cuprizone/toxicity , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Myelin Sheath/physiology , Oligodendroglia/metabolism , Remyelination/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...