Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37317306

ABSTRACT

Pigmentation, catalase activity and biofilm formation are virulence factors that cause resistance of Staphylococcus aureus to environmental stress factors including disinfectants. In recent years, automatic UV-C room disinfection gained greater importance in enhanced disinfection procedures to improve disinfection success in hospitals. In this study, we evaluated the effect of naturally occurring variations in the expression of virulence factors in clinical S. aureus isolates on tolerance against UV-C radiation. Quantification of staphyloxanthin expression, catalase activity and biofilm formation for nine genetically different clinical S. aureus isolates as well as reference strain S. aureus ATCC 6538 were performed using methanol extraction, a visual approach assay and a biofilm assay, respectively. Log10 reduction values (LRV) were determined after irradiation of artificially contaminated ceramic tiles with 50 and 22 mJ/cm2 UV-C using a commercial UV-C disinfection robot. A wide variety of virulence factor expression was observed, indicating differential regulation of global regulatory networks. However, no direct correlation with the strength of expression with UV-C tolerance was observed for either staphyloxanthin expression, catalase activity or biofilm formation. All isolates were effectively reduced with LRVs of 4.75 to 5.94. UV-C disinfection seems therefore effective against a wide spectrum of S. aureus strains independent of occurring variations in the expression of the investigated virulence factors. Due to only minor differences, the results of frequently used reference strains seem to be representative also for clinical isolates in S. aureus.

2.
Article in English | MEDLINE | ID: mdl-36554950

ABSTRACT

SARS-CoV-2 RNA is frequently identified in patient rooms and it was speculated that the viral load quantified by PCR might correlate with infectivity of surfaces. To evaluate Ct values for the prediction of infectivity, we investigated contaminated surfaces and Ct-value changes after disinfection. Viral RNA was detected on 37 of 143 investigated surfaces of an ICU. However, virus isolation failed for surfaces with a high viral RNA load. Also, SARS-CoV-2 could not be cultivated from surfaces artificially contaminated with patient specimens. In order to evaluate the significance of Ct values more precisely, we used surrogate enveloped bacteriophage Φ6. A strong reduction in Φ6 was achieved by three different disinfection methods. Despite a strong reduction in viability almost no change in the Ct values was observed for UV-C and alcoholic surface disinfectant. Disinfection using ozone resulted in a lack of Φ6 recovery as well as a detectable shift in Ct values indicating strong degradation of the viral RNA. The observed lack of significant effects on the detectable viral RNA after effective disinfection suggest that quantitative PCR is not suitable for predicting the infectivity of SARS-CoV-2 on inanimate surfaces. Ct values should therefore not be considered as markers for infectivity in this context.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Trust , Patients' Rooms , Disinfection
3.
Euro Surveill ; 27(26)2022 06.
Article in English | MEDLINE | ID: mdl-35775427

ABSTRACT

The extent of monkeypox virus environmental contamination of surfaces is unclear. We examined surfaces in rooms occupied by two monkeypox patients on their fourth hospitalisation day. Contamination with up to 105 viral copies/cm2 on inanimate surfaces was estimated by PCR and the virus was successfully isolated from surfaces with more than 106 copies. These data highlight the importance of strict adherence of hospital staff to recommended protective measures. If appropriate, pre-exposure or early post-exposure vaccination should be considered for individuals at risk.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Germany , Hospitals , Humans , Mpox (monkeypox)/transmission
4.
Front Public Health ; 9: 618263, 2021.
Article in English | MEDLINE | ID: mdl-33708756

ABSTRACT

To evaluate the effectiveness of automated room decontamination devices, a common aerosolized hydrogen peroxide (aHP) as well as a recent gaseous ozone-based device, which produces the disinfectant reagent without the need of consumables, were tested under real-life conditions. Twenty-two contaminated surfaces were positioned in different areas in a patient room with adjacent bathroom and anteroom. Following the decontamination process bacteria were recovered and reduction factors were calculated after performing quantitative culture. Following the manufactures instructions, the ozone-based device displayed a bactericidal effect (log10 > 5), whereas the aHP system failed for a high bacterial burden and achieves only a complete elimination of a realistic bioburden (log10 2). After increasing the exposure time to 30 min, the aHP device also reached a bactericidal effect. Nevertheless, our results indicate, that further research and development is necessary, to get knowledge about toxicity, efficacy and safety by using in complex hospital conditions and achieve meaningful integration in cleaning procedures, to reach positive effects on disinfection performance.


Subject(s)
Decontamination , Disinfectants , Disinfectants/pharmacology , Disinfection , Humans , Hydrogen Peroxide , Patients' Rooms
SELECTION OF CITATIONS
SEARCH DETAIL
...