Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Thyroid ; 27(12): 1534-1543, 2017 12.
Article in English | MEDLINE | ID: mdl-29032724

ABSTRACT

BACKGROUND: Anaplastic thyroid carcinoma (ATC), the most aggressive form of thyroid cancer, is unresponsive to radioiodine therapy. The current study aimed to extend the diagnostic and therapeutic application of radioiodine beyond the treatment of differentiated thyroid cancer by targeting the functional sodium-iodide symporter (NIS) to ATC. METHODS: The study employed nanoparticle vectors (polyplexes) based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) and coupled to the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand in order to target a NIS-expressing plasmid (LPEI-PEG-GE11/NIS) to EGFR overexpressing human thyroid carcinoma cell lines. Using ATC xenograft mouse models, transfection efficiency by 123I scintigraphy and potential for systemic radioiodine therapy after systemic polyplex application were evaluated. RESULTS: In vitro iodide uptake studies in SW1736 and Hth74 ATC cells, and, for comparison, in more differentiated follicular (FTC-133) and papillary (BCPAP) thyroid carcinoma cells demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS that correlated well with EGFR expression levels. After systemic polyplex injection, in vivo 123I gamma camera imaging revealed significant tumor-specific accumulation of radioiodine in an SW1736 and an Hth74 xenograft mouse model. Radioiodine accumulation was found to be higher in SW1736 tumors, reflecting in vitro results, EGFR expression levels, and results from ex vivo analysis of NIS staining. Administration of 131I in LPEI-PEG-GE11/NIS-treated SW1736 xenograft mice resulted in significantly reduced tumor growth associated with prolonged survival compared to control animals. CONCLUSIONS: The data open the exciting prospect of NIS-mediated radionuclide imaging and therapy of ATC after non-viral reintroduction of the NIS gene. The high tumor specificity after systemic application makes the strategy an attractive alternative for the treatment of highly metastatic ATC.


Subject(s)
Symporters/metabolism , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Neoplasms/therapy , Animals , Cell Line, Tumor , ErbB Receptors , Genetic Therapy , Humans , Iodine Radioisotopes/therapeutic use , Mice , Peptides , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
2.
PLoS One ; 12(4): e0174860, 2017.
Article in English | MEDLINE | ID: mdl-28380080

ABSTRACT

Recent advances in gene delivery into cells allow improved therapeutic effects in gene therapy trials. To increase the bioavailability of applied cells, it is of great interest that transfected cells remain at the application site and systemic spread is minimized. In this study, we tested clinically used biodegradable poly(lactic acid-co-glycolic acid) (PLGA) scaffolds (Vicryl & Ethisorb) as transient carriers for genetically modified cells. To this aim, we used human fibroblasts and examined attachment and proliferation of untransfected cells on the scaffolds in vitro, as well as the mechanical properties of the scaffolds at four time points (1, 3, 6 and 9 days) of cultivation. Furthermore, the adherence of cells transfected with green fluorescent protein (GFP) and vascular endothelial growth factor (VEGF165) and also VEGF165 protein secretion were investigated. Our results show that human fibroblasts adhere on both types of PLGA scaffolds. However, proliferation and transgene expression capacity were higher on Ethisorb scaffolds most probably due to a different architecture of the scaffold. Additionally, cultivation of the cells on the scaffolds did not alter their biomechanical properties. The results of this investigation could be potentially exploited in therapeutic regiments with areal delivery of transiently transfected cells and may open the way for a variety of applications of cell-based gene therapy, tissue engineering and regenerative medicine.


Subject(s)
Fibroblasts/physiology , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Tissue Scaffolds , Cell Adhesion , Cell Engineering , Cell Line , Cell Proliferation , Genetic Engineering , Green Fluorescent Proteins/metabolism , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Vascular Endothelial Growth Factor A/metabolism
3.
Oncotarget ; 8(20): 33393-33404, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28380420

ABSTRACT

The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Symporters/genetics , Theranostic Nanomedicine , Animals , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Transfer Techniques , Genetic Therapy , Humans , Iodine Radioisotopes , Male , Mice , Mice, Transgenic , Molecular Targeted Therapy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Positron-Emission Tomography , Radionuclide Imaging , Sodium Iodide/metabolism , Symporters/metabolism , Theranostic Nanomedicine/methods , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
J Gene Med ; 19(5)2017 May.
Article in English | MEDLINE | ID: mdl-28423213

ABSTRACT

BACKGROUND: Nonviral polymer-based gene transfer represents an adaptable system for tumor-targeted gene therapy because various design strategies of shuttle systems, together with the mechanistic concept of active tumor targeting, lead to improved gene delivery vectors resulting in higher tumor specificity, efficacy and safety. METHODS: Using the sodium iodide symporter (NIS) as a theranostic gene, nonviral gene delivery vehicles based on linear polyethylenimine (LPEI), polyethylene glycol (PEG) and coupled to the synthetic peptide B6 (LPEI-PEG-B6), which specifically binds to tumor cells, were investigated in a hepatocellular carcinoma xenograft model for tumor selectivity and transduction efficiency. RESULTS: In vitro incubation of three different tumor cell lines with LPEI-PEG-B6/NIS resulted in significant increase in iodide uptake activity compared to untargeted and empty vectors. After establishment of subcutaneous HuH7 tumors, NIS-conjugated nanoparticles were injected intravenously followed by analysis of radioiodide biodistribution using 123 I-scintigraphy showing significant perchlorate-sensitive iodide accumulation in tumors of LPEI-PEG-B6/NIS-treated mice (8.0 ± 1.5% ID/g 123 I; biological half-life of 4 h). After four cycles of repetitive polyplex/131 I applications, a significant delay of tumor growth was observed, which was associated with markedly improved survival in the therapy group. CONCLUSIONS: These results clearly demonstrate that systemic in vivo NIS gene transfer using nanoparticle vectors coupled to B6 tumor targeting ligand is capable of inducing tumor-specific radioiodide uptake. This promising gene therapy approach opens the exciting prospect of NIS-mediated radionuclide therapy in metastatic cancer, together with the possibility of combining several targeting ligands to enhance selective therapeutic efficacy in a broad field of cancer types with various receptor expression profiles.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Oligopeptides/genetics , Symporters/chemistry , Symporters/genetics , Animals , Cell Line, Tumor , Female , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Iodine Radioisotopes/chemistry , Mice , Mice, Nude , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , Tissue Distribution
5.
Mol Ther Nucleic Acids ; 2: e131, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24193032

ABSTRACT

We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by (123)I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. (124)I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of (131)I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy.Molecular Therapy-Nucleic Acids (2013) 2, e131; doi:10.1038/mtna.2013.58; published online 5 November 2013.

6.
J Nucl Med ; 54(8): 1450-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23843567

ABSTRACT

UNLABELLED: Currently, major limitations for the clinical application of adenovirus-mediated gene therapy are high prevalence of neutralizing antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR), and adenovirus sequestration by the liver. In the current study, we used the sodium iodide symporter (NIS) as a theranostic gene to investigate whether coating of adenovirus with synthetic dendrimers could be useful to overcome these hurdles in order to develop adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. METHODS: We coated replication-deficient (Ad5-CMV/NIS) (CMV is cytomegalovirus) and replication-selective (Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate transduction efficacy and altered tropism of these coated virus particles by (123)I scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy in a liver cancer xenograft mouse model. RESULTS: After dendrimer coating, Ad5-CMV/NIS demonstrated partial protection from neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in vitro. In vivo (123)I scintigraphy of nude mice revealed significantly reduced levels of hepatic transgene expression after intravenous injection of dendrimer-coated Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in significantly reduced liver toxicity and increased transduction efficiency of dcAd5-CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-selective Ad5-E1/AFP-E3/NIS, a significantly enhanced oncolytic effect was observed after intravenous application (virotherapy) that was further increased by additional treatment with a therapeutic dose of (131)I (radiovirotherapy) and was associated with markedly improved survival. CONCLUSION: These results demonstrate efficient liver detargeting and tumor retargeting of adenoviral vectors after coating with synthetic dendrimers, thereby representing a promising innovative strategy for systemic NIS gene therapy. Moreover, our study-based on the function of NIS as a theranostic gene allowing the noninvasive imaging of NIS expression by (123)I scintigraphy-provides detailed characterization of in vivo vector biodistribution and localization, level, and duration of transgene expression, essential prerequisites for exact planning and monitoring of clinical gene therapy trials that aim to individualize the NIS gene therapy concept.


Subject(s)
Adenoviridae/genetics , Dendrimers/metabolism , Liver Neoplasms/therapy , Liver Neoplasms/virology , Oncolytic Virotherapy/methods , Radiotherapy, Image-Guided/methods , Symporters/genetics , Adenoviridae/metabolism , Adenoviridae/physiology , Animals , Cell Line, Tumor , Humans , Iodine Radioisotopes/therapeutic use , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Mice , Radionuclide Imaging , Transduction, Genetic
7.
Hum Gene Ther ; 22(12): 1563-74, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21851208

ABSTRACT

We reported the induction of tumor-selective iodide uptake and therapeutic efficacy of (131)I in a hepatocellular carcinoma (HCC) xenograft mouse model, using novel polyplexes based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG), and coupled with the epidermal growth factor receptor-specific peptide GE11 (LPEI-PEG-GE11). The aim of the current study in the same HCC model was to evaluate the potential of biodegradable nanoparticle vectors based on pseudodendritic oligoamines (G2-HD-OEI) for systemic sodium iodide symporter (NIS) gene delivery and to compare efficiency and tumor specificity with LPEI-PEG-GE11. Transfection of HCC cells with NIS cDNA, using G2-HD-OEI, resulted in a 44-fold increase in iodide uptake in vitro as compared with a 22-fold increase using LPEI-PEG-GE11. After intravenous application of G2-HD-OEI/NIS HCC tumors accumulated 6-11% ID/g (123)I (percentage of the injected dose per gram tumor tissue) with an effective half-life of 10 hr (tumor-absorbed dose, 281 mGy/MBq) as measured by (123)I scintigraphic gamma camera or single-photon emission computed tomography computed tomography (SPECT CT) imaging, as compared with 6.5-9% ID/g with an effective half-life of only 6 hr (tumor-absorbed dose, 47 mGy/MBq) for LPEI-PEG-GE11. After only two cycles of G2-HD-OEI/NIS/(131)I application, a significant delay in tumor growth was observed with markedly improved survival. A similar degree of therapeutic efficacy had been observed after four cycles of LPEI-PEG-GE11/(131)I. These results clearly demonstrate that biodegradable nanoparticles based on OEI-grafted oligoamines show increased efficiency for systemic NIS gene transfer in an HCC model with similar tumor selectivity as compared with LPEI-PEG-GE11, and therefore represent a promising strategy for NIS-mediated radioiodine therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Genetic Therapy , Iodine Radioisotopes/therapeutic use , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Symporters/genetics , Animals , Blotting, Western , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Combined Modality Therapy , Drug Delivery Systems , Fluorescent Antibody Technique , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Humans , Image Processing, Computer-Assisted , Immunoenzyme Techniques , Iodine Radioisotopes/pharmacokinetics , Liver Neoplasms/genetics , Mice , Mice, Nude , Multimodal Imaging , Polyethylene Glycols/administration & dosage , Polyethyleneimine/administration & dosage , Positron-Emission Tomography , RNA, Messenger/genetics , Radiotherapy , Real-Time Polymerase Chain Reaction , Tomography, X-Ray Computed , Tumor Cells, Cultured
8.
Mol Ther ; 19(9): 1704-13, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21587211

ABSTRACT

Due to its dual role as reporter and therapy gene, the sodium iodide symporter (NIS) allows noninvasive imaging of functional NIS expression by (123)I-scintigraphy or (124)I-PET imaging before the application of a therapeutic dose of (131)I. NIS expression provides a novel mechanism for the evaluation of mesenchymal stem cells (MSCs) as gene delivery vehicles for tumor therapy. In the current study, we stably transfected bone marrow-derived CD34(-) MSCs with NIS cDNA (NIS-MSC), which revealed high levels of functional NIS protein expression. In mixed populations of NIS-MSCs and hepatocellular cancer (HCC) cells, clonogenic assays showed a 55% reduction of HCC cell survival after (131)I application. We then investigated body distribution of NIS-MSCs by (123)I-scintigraphy and (124)I-PET imaging following intravenous (i.v.) injection of NIS-MSCs in a HCC xenograft mouse model demonstrating active MSC recruitment into the tumor stroma which was confirmed by immunohistochemistry and ex vivo γ-counter analysis. Three cycles of systemic MSC-mediated NIS gene delivery followed by (131)I application resulted in a significant delay in tumor growth. Our results demonstrate tumor-specific accumulation and therapeutic efficacy of radioiodine after MSC-mediated NIS gene delivery in HCC tumors, opening the prospect of NIS-mediated radionuclide therapy of metastatic cancer using MSCs as gene delivery vehicles.


Subject(s)
Carcinoma, Hepatocellular/radiotherapy , Gene Transfer Techniques , Liver Neoplasms/radiotherapy , Mesenchymal Stem Cells/pathology , Symporters/genetics , Animals , Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Blotting, Western , Carcinoma, Hepatocellular/genetics , Cell Survival , Female , Fluorescent Antibody Technique , Genetic Therapy/methods , Hep G2 Cells , Humans , Iodine Radioisotopes/pharmacokinetics , Liver Neoplasms/genetics , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Symporters/metabolism , Transfection/methods
9.
Hum Gene Ther ; 22(11): 1403-12, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21488714

ABSTRACT

We reported the therapeutic efficacy of (131)I in hepatocellular carcinoma (HCC) cells stably expressing the sodium iodide symporter (NIS) under the control of the tumor-specific α-fetoprotein (AFP) promoter. In the current study we investigated the efficacy of adenovirus-mediated in vivo NIS gene transfer followed by (131)I and (188)Re administration for the treatment of HCC xenografts. We used a replication-deficient adenovirus carrying the human NIS gene linked to the mouse AFP promoter (Ad5-AFP-NIS) for in vitro and in vivo NIS gene transfer. Functional NIS expression was confirmed by in vivo γ-camera imaging, followed by analysis of NIS protein and mRNA expression. Human HCC (HepG2) cells infected with Ad5-AFP-NIS concentrated 50% of the applied activity of (125)I, which was sufficiently high for a therapeutic effect in an in vitro clonogenic assay. Four days after intratumoral injection of Ad5-AFP-NIS (3×10(9) plaque-forming units) HepG2 xenografts accumulated 14.5% injected dose (ID)/g (123)I with an effective half-life of 13 hr (tumor-absorbed dose, 318 mGy/MBq (131)I). In comparison, 9.2% ID/g (188)Re was accumulated in tumors with an effective half-life of 12.8 hr (tumor-absorbed dose, 545 mGy/MBq). After adenovirus-mediated NIS gene transfer in HepG2 xenografts administration of a therapeutic dose of (131)I or (188)Re (55.5 MBq) resulted in a significant delay in tumor growth and improved survival without a significant difference between (188)Re and (131)I. In conclusion, a therapeutic effect of (131)I and (188)Re was demonstrated in HepG2 xenografts after tumor-specific adenovirus-mediated in vivo NIS gene transfer.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Iodine Radioisotopes/administration & dosage , Liver Neoplasms/therapy , Radioisotopes/administration & dosage , Rhenium/administration & dosage , Symporters/genetics , Adenoviridae/genetics , Animals , Cell Line, Tumor , Genetic Therapy , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Mice , Mice, Nude , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transfection , Transplantation, Heterologous
10.
Mol Ther ; 19(4): 676-85, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21245850

ABSTRACT

We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of radioiodine in neuroblastoma tumors after systemic nonviral polyplex-mediated sodium iodide symporter (NIS) gene delivery. In the present study, we used novel polyplexes based on linear polyethylenimine (LPEI), polyethylene glycol (PEG), and the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand to target a NIS-expressing plasmid to hepatocellular carcinoma (HCC) (HuH7). Incubation of HuH7 cells with LPEI-PEG-GE11/NIS polyplexes resulted in a 22-fold increase in iodide uptake, which was confirmed in other cancer cell lines correlating well with EGFR expression levels. Using (123)I-scintigraphy and ex vivo γ-counting, HuH7 xenografts accumulated 6.5-9% injected dose per gram (ID/g) (123)I, resulting in a tumor-absorbed dose of 47 mGray/Megabecquerel (mGy/MBq) (131)Iodide ((131)I) after intravenous (i.v.) application of LPEI-PEG-GE11/NIS. No iodide uptake was observed in other tissues. After pretreatment with the EGFR-specific antibody cetuximab, tumoral iodide uptake was markedly reduced confirming the specificity of EGFR-targeted polyplexes. After three or four cycles of polyplex/(131)I application, a significant delay in tumor growth was observed associated with prolonged survival. These results demonstrate that systemic NIS gene transfer using polyplexes coupled with an EGFR-targeting ligand is capable of inducing tumor-specific iodide uptake, which represents a promising innovative strategy for systemic NIS gene therapy in metastatic cancers.


Subject(s)
ErbB Receptors/genetics , Genetic Therapy/methods , Iodine Radioisotopes/therapeutic use , Liver Neoplasms/therapy , Symporters/genetics , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Liver Neoplasms/radiotherapy , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Polymerase Chain Reaction , Polymers/administration & dosage , Polymers/chemistry
11.
Clin Cancer Res ; 15(19): 6079-86, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19789324

ABSTRACT

PURPOSE: We recently reported the significant therapeutic efficacy of radioiodine therapy in various tumor mouse models following transcriptionally targeted sodium iodide symporter (NIS) gene transfer. These studies showed the high potential of NIS as a novel diagnostic and therapeutic gene for the treatment of extrathyroidal tumors. As a next crucial step towards clinical application of NIS-mediated radionuclide therapy we aim at systemic delivery of the NIS gene to target extrathyroidal tumors even in the metastatic stage. EXPERIMENTAL DESIGN: In the current study, we used synthetic polymeric vectors based on pseudodendritic oligoamines with high intrinsic tumor affinity (G2-HD-OEI) to target a NIS-expressing plasmid (CMV-NIS-pcDNA3) to neuroblastoma (Neuro2A) cells. RESULTS: Incubation with NIS-containing polyplexes (G2-HD-OEI/NIS) resulted in a 51-fold increase in perchlorate-sensitive iodide uptake activity in Neuro2A cells in vitro. Through (123)I-scintigraphy and ex vivo gamma counting Neuro2A tumors in syngeneic A/J mice were shown to accumulate 8% to 13% ID/g (123)I with a biological half-life of 13 hours, resulting in a tumor-absorbed dose of 247 mGy/MBq (131)I after i.v. application of G2-HD-OEI/NIS. Nontarget organs, including liver, lung, kidneys, and spleen revealed no significant iodide uptake. Moreover, two cycles of systemic NIS gene transfer followed by (131)I application (55.5 MBq) resulted in a significant delay in tumor growth associated with markedly improved survival. CONCLUSIONS: In conclusion, our data clearly show the high potential of novel pseudodendritic polymers for tumor-specific NIS gene delivery after systemic application, opening the prospect of targeted NIS-mediated radionuclide therapy of nonthyroidal tumors even in metastatic disease.


Subject(s)
Genetic Therapy/methods , Iodine Radioisotopes/therapeutic use , Neuroblastoma/therapy , Radiotherapy , Symporters/genetics , Animals , Biological Availability , Combined Modality Therapy , Dendrimers/administration & dosage , Dendrimers/pharmacokinetics , Gene Transfer Techniques , Iodine Radioisotopes/pharmacokinetics , Male , Mice , Neoplasm Transplantation , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Radiotherapy/methods , Radiotherapy, Adjuvant , Symporters/administration & dosage , Symporters/metabolism , Time Factors , Tumor Burden , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...