Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Stem Cell Res ; 54: 102431, 2021 07.
Article in English | MEDLINE | ID: mdl-34171784

ABSTRACT

IPSC line RCPCMi004-8 was generated from skin fibroblasts collected from a male patient with spinocerebellar ataxia 17. The patient has expanded trinucleotide CAG repeats in the TBP (TATA-binding protein) gene on chromosome 6q27. The reprogramming of fibroblasts was performed with Sendai viruses containing Oct-4, Sox-2, Klf-4, and c-Myc. Pluripotency was confirmed by immunofluorescence, RT-PCR, and the formation of embryoid bodies. The RCPCMi008-A cell line carries the same trinucleotide CAG repeats in the TBP gene. The RCPCMi008-A cell line can be used to model Spinocerebellar ataxia in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Spinocerebellar Ataxias , Cell Differentiation , Cell Line , Humans , Male , Spinocerebellar Ataxias/genetics
2.
Mitochondrion ; 57: 205-212, 2021 03.
Article in English | MEDLINE | ID: mdl-33486010

ABSTRACT

Currently, pathogenic variants in more than 25 nuclear genes, involved in mtDNA maintenance, are associated with human disorders. mtDNA maintenance disorders manifest with a wide range of phenotypes, from severe infantile-onset forms of myocerebrohepatopathy to late-onset forms of myopathies, chronic progressive external ophthalmoplegia, and parkinsonism. This study represents the results of molecular genetic analysis and phenotypes of 102 probands with mtDNA maintenance disorders. So far, this is the largest Russian cohort for this group of diseases. Mutations were identified in 10 mtDNA maintenance genes: POLG (n = 59), DGUOK (n = 14), TWNK (n = 14), TK2 (n = 8), MPV17 (n = 2), OPA3 (n = 1), FBXL4 (n = 1), RRM2B (n = 1), SUCLG1 (n = 1) and TYMP (n = 1). We review a mutation spectrum for the DGUOK and TWNK genes, that can be specific for the Russian population. In 34 patients we measured the blood mtDNA copy number and showed its significant reduction. Novel variants were found in 41 cases, which significantly expands the mutational landscape of mtDNA maintenance disorders.


Subject(s)
Mitochondria/genetics , Mitochondrial Diseases/pathology , Mitochondrial Proteins/genetics , Mutation , Adult , Child , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male , Mitochondrial Diseases/genetics , Mitochondrial Proteins/chemistry , Phenotype , Russia/ethnology
3.
Article in Russian | MEDLINE | ID: mdl-32105265

ABSTRACT

AIM: To study a methylation profile of FXN gene and its influence on the clinical phenotype of Friedreich's desease (FD). MATERIAL AND METHODS: The methylation pattern was analyzed in 17 patients with FD. Forty-five CpG-sites in the promoter region and the region of intron 1 of FXN: before the GAA-expansion (UP-GAA) and after the GAA-expansion (DOWN-GAA), were studied. RESULTS: Correlations between the methylation level of CpG-sites in UP-GAA and DOWN-GAA and the number of GAA repeats in both expanded FXN alleles in patients with FD were found. An analysis revealed an earlier onset and a more severe course of FD in cases with hypermethylation of several CpG-sites in the UP-GAA region. The correlation between the methylation pattern and the presence of extraneural manifestations of FD was also revealed. In FD patients with cardiomyopathy, a hypomethylated CpG-site in the promoter region was found. In FD patients with carbohydrate metabolism disorders, two hypomethylated CpG-sites in the DOWN-GAA region were observed. CONCLUSION: The results indicate a significant contribution of epigenetic modifications of FXN to the clinical presentation of FA.


Subject(s)
Epigenesis, Genetic , Friedreich Ataxia/genetics , Friedreich Ataxia/physiopathology , Alleles , CpG Islands/genetics , DNA Methylation , Humans , Introns/genetics , Promoter Regions, Genetic/genetics , Trinucleotide Repeat Expansion/genetics
4.
Article in Russian | MEDLINE | ID: mdl-31626222

ABSTRACT

AIM: To develop a complex algorithm for autosomal recessive ataxia (ARA) diagnosis applicable for Russian patients with degenerative ataxias. MATERIAL AND METHODS: 48 patients with of presumably degenerative ataxias were examined. Clinical evaluation was performed with the use of the SARA and ICARS scales (for ataxia) and MoCA (cognitive functions), and a set of laboratory tests was carried out, including electromyography, brain MRI, and DNA analysis of mutations responsible for Friedreich's disease and spinocerebellar ataxias (SCAs) types 1, 2, 3, 6 and 17. 28 patients underwent mutation screening using a multigenic MPS panel. RESULTS: 8 patients (16.7%) with non-hereditary causes of ataxia were identified: cerebellar alcoholic degeneration (n = 6) and multiple system atrophy of cerebellar type (n = 2); 3 patients (6.3%) with genetic ataxias were identified using routine DNA tests, such as with SCA type 1, 2 and 17, and 9 (18.8%) patients with Friedreich's disease. The MPS panel enabled molecular diagnosis of ARA in 8 patients (28.6%): ataxia-telangiectasia (n = 2), SANDO syndrome (n = 2), ataxia with oculomotor apraxia type 2 (n = 1), SCAR10 (n = 1), SCAR16 (n = 1), and atypical form of neuroaxonal dystrophy (n = 1). The diagnosis was not established in 20 patients. CONCLUSION: We have proposed an appropriate algorithm for degenerative ataxia diagnosis which is recommended to be used when examining patients with sporadic and autosomal recessive cases of the disorders with dyscoordination of movements.


Subject(s)
Algorithms , Cerebellar Ataxia , Friedreich Ataxia , Cerebellar Ataxia/diagnosis , Friedreich Ataxia/diagnosis , Humans , Russia
5.
Biochemistry (Mosc) ; 83(9): 1030-1039, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30472941

ABSTRACT

Huntington's disease (HD) is a severe autosomal dominant neurodegenerative disorder characterized by a combination of motor, cognitive, and psychiatric symptoms, atrophy of the basal ganglia and the cerebral cortex, and inevitably progressive course resulting in death 5-20 years after manifestation of its symptoms. HD is caused by expansion of CAG repeats in the HTT gene, which leads to pathological elongation of the polyglutamine tract within the respective protein - huntingtin. In this review, we present a modern view on molecular biology of HD as a representative of the group of polyglutamine diseases, with an emphasis on conformational changes of mutant huntingtin, disturbances in its cellular processing, and proteolytic stress in degenerating neurons. Main pathogenetic mechanisms of neurodegeneration in HD are discussed in detail, such as systemic failure of transcription, mitochondrial dysfunction and suppression of energy metabolism, abnormalities of cytoskeleton and axonal transport, microglial inflammation, decrease in synthesis of brain-derived neurotrophic factor, etc.


Subject(s)
Huntingtin Protein/genetics , Huntington Disease/pathology , Axonal Transport/physiology , CREB-Binding Protein/metabolism , Cytoskeleton/metabolism , Energy Metabolism/physiology , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Mitochondria/metabolism , Peptides/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
6.
Cerebellum Ataxias ; 3: 2, 2016.
Article in English | MEDLINE | ID: mdl-26770814

ABSTRACT

BACKGROUND: Spinocerebellar ataxias (SСAs) are a highly heterogeneous group of inherited neurological disorders. The symptoms of ataxia vary in individual patients and even within the same SCA subtype. A study of a four-generation family with autosomal dominant (AD) non-progressive SCA with mild symptoms was conducted. The genotyping of this family revealed no frequent pathogenic mutations. So the objective of this study was to identify the genetic causes of the disease in this family with the technology of whole-exome sequencing (WES). METHODS AND RESULTS: WES, candidate variant analysis with further Sanger sequencing, mRNA secondary structure prediction, and RSCU analysis were performed; a heterozygous missense mutation in ITPR1 was identified. CONCLUSION: Our study confirms the fact that ITPR1 gene plays a certain role in the pathogenesis of SCAs, and, therefore, we suggest that c.4657G>A p.Val1553Met) is a disease-causing mutation in the family studied.

7.
Eur J Neurol ; 7(5): 535-40, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11054139

ABSTRACT

We examined a large Turkmen family with 'pseudo-dominant' inheritance of Friedreich's ataxia resulting from consanguineous marriage of a Friedreich's ataxia patient to a heterozygote carrying an ancestral mutated allele. Two distinct phenotypes of the disease co-segregated within this genealogy. Two brothers from the younger generation exhibited 'classical' Friedreich's ataxia with onset of symptoms before 10 years and a rapidly progressive course. In contrast, three patients (two sisters from the younger generation and their father) had a more benign phenotype of late-onset Friedreich's ataxia with the onset at 26, 45 and 48 years and slow progression over decades. The patients with 'classical' Friedreich's ataxia were homozygous for a common ancestral expanded allele of the X25 gene containing 700-800 GAA repeats, while the patients with late-onset Friedreich's ataxia had two different mutated alleles, the shorter 250-repeat expansion of paternal origin and the longer 700-repeat expansion of maternal origin. One may conclude that clinical variability of Friedreich's ataxia in our patients is accounted for predominantly by a modifying effect of one of the two (shorter or longer) expanded alleles inherited from their affected father. Our observation clearly demonstrates the significance of variable-sized alleles for the phenotypic expression of the disease.


Subject(s)
Friedreich Ataxia/genetics , Pedigree , Trinucleotide Repeats/genetics , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Child , Consanguinity , DNA Mutational Analysis , Female , Friedreich Ataxia/epidemiology , Genes, Dominant/genetics , Humans , Male , Middle Aged , Phenotype , Turkey/epidemiology
8.
J Neurol ; 243(7): 506-10, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8836939

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is one form of autosomal dominant cerebellar ataxia (ADCA) caused by trinucleotide (CAG) repeat expansion within a mutant gene. We investigated 25 patients from 15 Russian ADCA families for SCA1 mutation and found an expanded CAG repeat in 5 families. Mutant chromosomes contained 41-51 CAG repeats (mean 46.1, SD 3.1), and normal chromosomes displayed 21-27 repeat units (mean 24.7, SD 1.3). Progressive cerebellar ataxia in our series of SCA1 patients was very commonly associated with dysarthria (in all cases) and pyramidal signs (in 10 of 11 cases). In three patients from one family we found optic atrophy, which has never been described before in genetically proven cases of SCA1. We observed no specific clinical features distinguishing SCA1 from non-SCA1 patients. In contrast to the high frequency of SCA1 in our series, we found no patients with Machado-Joseph disease, another form of ADCA caused by expanded CAG repeat.


Subject(s)
Spinocerebellar Degenerations/genetics , Adult , Alleles , Female , Humans , Male , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...