Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 892: 164627, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37285999

ABSTRACT

The digital elevation models (DEMs) are the primary and most important spatial inputs for a wide range of hydrological applications. However, their availability from multiple sources and at various spatial resolutions poses a challenge in watershed modeling as they influence hydrological feature delineation and model simulations. In this study, we evaluated the effect of DEM choice on stream and catchment delineation and streamflow simulation using the SWAT model in four distinct geographic regions with diverse terrain surfaces. Performance evaluation metrics, including Willmott's index of agreement, and nRMSE combined with visual comparisons were employed to assess each DEM's performance. Our results revealed that the choice of DEM has a significant impact on the accuracy of stream and catchment delineation, while its influence on streamflow simulation within the same catchment was relatively minor. Among the evaluated DEMs, AW3D30 and COP30 performed the best, closely followed by MERIT, whereas TanDEM-X and HydroSHEDS exhibited poorer performance. All DEMs displayed better accuracy in mountainous and larger catchments compared to smaller and flatter catchments. Forest cover also played a role in accuracy, mainly due to its association with steep slopes. Our findings provide valuable insights for making informed data selection decisions in watershed modeling, considering the specific characteristics of the catchment and the desired level of accuracy.


Subject(s)
Environmental Monitoring , Models, Theoretical , Environmental Monitoring/methods , Rivers , Forests , Hydrology/methods
2.
Sci Total Environ ; 840: 156613, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35700783

ABSTRACT

Nutrient runoff from agricultural production is one of the main causes of water quality deterioration in river systems and coastal waters. Water quality modeling can be used for gaining insight into water quality issues in order to implement effective mitigation efforts. Process-based nutrient models are very complex, requiring a lot of input parameters and computationally expensive calibration. Recently, ML approaches have shown to achieve an accuracy comparable to the process-based models and even outperform them when describing nonlinear relationships. We used observations from 242 Estonian catchments, amounting to 469 yearly TN and 470 TP measurements covering the period 2016-2020 to train random forest (RF) models for predicting annual N and P concentrations. We used a total of 82 predictor variables, including land cover, soil, climate and topography parameters and applied a feature selection strategy to reduce the number of dependent features in the models. The SHAP method was used for deriving the most relevant predictors. The performance of our models is comparable to previous process-based models used in the Baltic region with the TN and TP model having an R2 score of 0.83 and 0.52, respectively. However, as input data used in our models is easier to obtain, the models offer superior applicability in areas, where data availability is insufficient for process-based approaches. Therefore, the models enable to give a robust estimation for nutrient losses at national level and allows to capture the spatial variability of the nutrient runoff which in turn enables to provide decision-making support for regional water management plans.


Subject(s)
Phosphorus , Rivers , Environmental Monitoring , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Water Quality
3.
Sci Rep ; 10(1): 5803, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242044

ABSTRACT

Persistent forest loss in the Brazilian Legal Amazon (BLA) is responsible for carbon emission, reduction of ecosystem services, and loss of biodiversity. Combining spatial data analysis with high spatial resolution data for forest cover and forest loss, we quantified the spatial and temporal patterns of forest dynamics in the BLA. We identified an alarming trend of increasing deforestation, with especially high rates in 2016 and 2017. Moreover, the creation of forest cover fragments is faster than ever due to decreasing size and dispersion of forest loss patches. From 2001 to 2017, the number of large forest loss patches decreased significantly, accompanied by a reduction in the size of these patches. Enforcement of field inspections and of initiatives to promote forest conservation will be required to stop this trend.

SELECTION OF CITATIONS
SEARCH DETAIL
...