Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920745

ABSTRACT

In order to economize injection molded prototypes, additive manufacturing of, e.g., curable plastics based tools, can be employed, which is known as soft tooling. However, one disadvantage of such tools is that the variothermal process, which is needed to produce polymeric parts with small features, can lead to a shorter lifespan of the tooling due to its thermally impaired material properties. Here, a novel concept is proposed, which allows to locally heat the mold cavity via induction to circumvent the thermal impairment of the tooling material. The developed fabrication process consists of additive manufacturing of the tooling, PVD coating the mold cavity with an adhesion promoting layer and a seed layer, electroplating of a ferromagnetic metal layer, and finally patterning the metal layer via laser ablation to enhance the quality and efficiency of the energy transfer as well as the longevity by geometric measures. This process chain is investigated on 2D test specimens to find suitable fabrication parameters, backed by adhesion tests as well as environmental and induction tests. The results of these investigations serve as proof of concept and form the base for the investigation of such induction layers in actual soft tooling cavities.

2.
Nanomaterials (Basel) ; 10(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066520

ABSTRACT

Establishing energy storage systems beyond conventional lithium ion batteries requires the development of novel types of electrode materials. Such materials should be capable of accommodating ion species other than Li+, and ideally, these ion species should be of multivalent nature, such as Al3+. Along this line, we introduce a highly porous aerogel cathode composed of reduced graphene oxide, which is loaded with nanostructured SnO2. This binder-free hybrid not only exhibits an outstanding mechanical performance, but also unites the pseudocapacity of the reduced graphene oxide and the electrochemical storage capacity of the SnO2 nanoplatelets. Moreover, the combination of both materials gives rise to additional intercalation sites at their interface, further contributing to the total capacity of up to 16 mAh cm-3 at a charging rate of 2 C. The high porosity (99.9%) of the hybrid and the synergy of its components yield a cathode material for high-rate (up to 20 C) aluminum ion batteries, which exhibit an excellent cycling stability over 10,000 tested cycles. The electrode design proposed here has a great potential to meet future energy and power density demands for advanced energy storage devices.

3.
Materials (Basel) ; 13(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599920

ABSTRACT

Bacterial cellulose is an organic product of certain bacterias' metabolism. It differs from plant cellulose by exhibiting a high strength and purity, making it especially interesting for flexible electronics, membranes for water purification, tissue engineering for humans or even as artificial skin and ligaments for robotic devices. However, bacterial cellulose's naturally slow growth rate has limited its large-scale applicability to date. Titanium (IV) bis-(ammonium lactato) dihydroxide is shown to be a powerful tool to boost the growth rate of bacterial cellulose production by more than one order of magnitude and that it simultaneously serves as a precursor for the Ti4+-coordinated cross-linking of the fibers during membrane formation. The latter results in an almost two-fold increase in Young's modulus (~18.59 GPa), a more than three-fold increase in tensile strength (~436.70 MPa) and even a four-fold increase in toughness (~6.81 MJ m-³), as compared to the pure bacterial cellulose membranes.

4.
Philos Trans A Math Phys Eng Sci ; 377(2150): 20190130, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31177957

ABSTRACT

The distinct electronic properties, including p-type semiconducting and a wide optical band gap, renders SnO suitable for applications such as microelectronic devices, gas sensors and electrodes. However, the synthesis of SnO is rather challenging due to the instability of the oxide, which is usually obtained as a by-product of SnO2 fabrication. In this work, we developed a bioinspired synthesis, based on a hydrothermal approach, for the direct production of SnO nanoparticles. The amount of mineralizer, inducing the precipitation, was identified, which supports a template-free formation of the nanosized SnO particles at low temperature and mild chemical conditions. Moreover, the SnO nanoparticles exhibit a shape of unique three-dimensional crosses similar to the calcite crosses present in the calcareous sponges. We demonstrated that SnO crosses are evenly distributed and embedded in an organic scaffold by an ice-templating approach, in this way closely mimicking the structure of calcareous sponges. Such scaffolds, reinforced by an active material, here SnO, could be used as filters, sensors or electrodes, where a high surface area and good accessibility are essential. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.

5.
Nanoscale ; 10(33): 15736-15746, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30094430

ABSTRACT

Owing to their unique layer structure, high aspect ratio and intercalation capability, vanadium pentoxide (V2O5) nanofibers are close-to-ideal building blocks for high performance electrodes for metal-ion batteries. However, thus far investigated electrodes composed of V2O5 nanofibers mostly contain binders and conductive agents, which reduce the electrodes' gravimetric capacity. Here we demonstrate self-supporting V2O5 nanofiber-based films that combine high mechanical flexibility and stability with good electrical conductivity. This has been achieved by suitable adjustment of the nanofiber length, in combination with a suitable humidity controlled post-treatment, to ensure an effective nanofiber interconnection and aging of the films. The optimization of these two parameters allows for an impressive 81%, 184%, and 281% enhancement in Young's modulus, tensile strength and toughness respectively, along with an increase of electrical conductivity by up to 165%. Such films can reach storage capacities of up to 150 mA h g-1 without the support of conductive agents and binders. Our findings provide fundamental design guidelines for advanced binder-free electrode materials, which unite high specific storage capacity, excellent mechanical stability and good intrinsic electrical conductivity - the key to technologically advanced battery performance and lifetime.

6.
Nano Lett ; 18(4): 2519-2524, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29558622

ABSTRACT

The demand to outperform current technologies pushes scientists to develop novel strategies, which enable the fabrication of materials with exceptional properties. Along this line, lightweight structural materials are of great interest due to their versatile applicability as sensors, catalysts, battery electrodes, and acoustic or mechanical dampers. Here, we report a strategy to design ultralight (ρ = 3 mg/cm3) and hierarchically structured ceramic scaffolds of macroscopic size. Such scaffolds exhibit mechanical reversibility comparable to that of microscopic metamaterials, leading to a macroscopically remarkable dynamic mechanical performance. Upon mechanical loading, these scaffolds show a deformation mechanism similar to polyurethane foams, and this resilience yields ultrahigh damping capacities, tan δ, of up to 0.47.

7.
Sci Rep ; 7: 42951, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218301

ABSTRACT

The synthesis of ceramic materials combining high porosity and permeability with good mechanical stability is challenging, as optimising the latter requires compromises regarding the first two properties. Nonetheless, significant progress can be made in this direction by taking advantage of the structural design principles evolved by nature. Natural cellular solids achieve good mechanical stability via a defined hierarchical organisation of the building blocks they are composed of. Here, we report the first synthetic, ceramic-based scaffold whose architecture closely mimics that of cuttlebone -a structural biomaterial whose porosity exceeds that of most other natural cellular solids, whilst preserving an excellent mechanical strength. The nanostructured, single-component scaffold, obtained by ice-templated assembly of V2O5 nanofibres, features a highly sophisticated and elaborate architecture of equally spaced lamellas, which are regularly connected by pillars as lamella support. It displays an unprecedented porosity of 99.8 %, complemented by an enhanced mechanical stability. This novel bioinspired, functional material not only displays mechanical characteristics similar to natural cuttlebone, but the multifunctionality of the V2O5 nanofibres also renders possible applications, including catalysts, sensors and electrodes for energy storage.

8.
Sci Rep ; 7: 40999, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102338

ABSTRACT

Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre's architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers' mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young's modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage.

9.
J Phys Condens Matter ; 24(1): 016002, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22133702

ABSTRACT

We have prepared the complete delafossite solid solution series between diamagnetic CuAlO(2) and the t(2g)(3)frustrated antiferromagnet CuCrO(2). The evolution with composition x in CuAl(1-x)Cr(x)O(2) of the crystal structure and magnetic properties has been studied and is reported here. The room-temperature unit cell parameters follow the Végard law and increase with x as expected. The µ(eff) is equal to the Cr(3+) spin-only S = 3/2 value throughout the entire solid solution. Θ(CW) is negative, indicating that the dominant interactions are antiferromagnetic, and its magnitude increases with Cr substitution. For dilute Cr compositions, the nearest-neighbor exchange coupling constant J(BB) was estimated by mean-field theory to be 3.0 meV. Despite the sizable Θ(CW), long-range antiferromagnetic order does not develop until x is almost 1, and is preceded by glassy behavior. The data presented here, and those on dilute Al substitution from Okuda et al, suggest that the reduction in magnetic frustration due to the presence of non-magnetic Al does not have as dominant an effect on magnetism as chemical disorder and dilution of the magnetic exchange. For all samples, the 5 K isothermal magnetization does not saturate in fields up to 5 T and minimal hysteresis is observed. The presence of antiferromagnetic interactions is clearly evident in the sub-Brillouin behavior with a reduced magnetization per Cr atom. An inspection of the scaled Curie plot reveals that significant short-range antiferromagnetic interactions occur in CuCrO(2) above its Néel temperature, consistent with its magnetic frustration. Uncompensated short-range behavior is present in the Al-substituted samples and is likely a result of chemical disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...