Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109459, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38558930

ABSTRACT

Future-oriented behavior is regarded as a cornerstone of human cognition. One key phenomenon through which future orientation can be studied is the delay of gratification, when consumption of an immediate reward is withstood to achieve a larger reward later. The delays used in animal delay of gratification paradigms are rather short to be considered relevant for studying human-like future orientation. Here, for the first time, we show that rhesus macaques exhibit human-relevant future orientation downregulating their operant food consumption in anticipation of a nutritionally equivalent but more palatable food with an unprecedentedly long delay of approximately 2.5 h. Importantly, this behavior is not a result of conditioning but intrinsic to the animals. Our results show that the cognitive time horizon of primates, when tested in ecologically valid foraging-like experiments, extends much further into the future than previously considered, opening up new avenues for translational biomedical research.

2.
Brain Sci ; 13(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37239174

ABSTRACT

The interaction of physical and numerical size has been investigated and repeatedly demonstrated in the numerical Stroop task, in which participants compare digits of different physical sizes. It is, however, not entirely clear yet what psychological processes contribute to this interaction. The aim of the present study is to investigate the role of inhibition in the interaction of physical and numerical size, by introducing a novel paradigm that is suitable to elicit inhibition-related event-related potential components. To this end, we combined the go/nogo paradigm with the numerical Stroop task while measuring EEG and reaction times. Participants were presented with Arabic number pairs and had to press a button if the number on one side was numerically larger and they had to refrain from responding if the number on the other side was numerically larger. The physical size of the number pairs was also manipulated, in order to create congruent, neutral, and incongruent trials. Behavioural results confirmed the well-established numerical distance and numerical Stroop effects. Analysis of electrophysiological data revealed the classical go/nogo electrophysiological effects with numerical stimuli, and showed that peak amplitudes were larger for nogo than for go trials on the N2, as well as on the P3 component, on frontal and midline electrodes. When analysing the congruency effects, the peak amplitude of N2 was larger in incongruent trials than in neutral and congruent trials, while there was no evidence of a congruency effect on the P3 component peaks. Further analysis of the electrophysiological data revealed an additional facilitatory effect in the go trials, as well as an additional interference effect in the nogo trials. Taken together, it seems that interference effects are probably resolved by inhibitory processes and that facilitatory effects are affected by different cognitive control processes required by go versus nogo trials.

3.
Neuroimage ; 245: 118650, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34687860

ABSTRACT

Visual working memory representations must be protected from the intervening irrelevant visual input. While it is well known that interference resistance is most challenging when distractors match the prioritised mnemonic information, its neural mechanisms remain poorly understood. Here, we identify two top-down attentional control processes that have opposing effects on distractor resistance. We reveal an early selection negativity in the EEG responses to matching as compared to non-matching distractors, the magnitude of which is negatively associated with behavioural distractor resistance. Additionally, matching distractors lead to reduced post-stimulus alpha power as well as increased fMRI responses in the object-selective visual cortical areas and the inferior frontal gyrus. However, the congruency effect found on the post-stimulus periodic alpha power and the inferior frontal gyrus fMRI responses show a positive association with distractor resistance. These findings suggest that distractor interference is enhanced by proactive memory content-guided selection processes and diminished by reactive allocation of top-down attentional resources to protect memorandum representations within visual cortical areas retaining the most selective mnemonic code.


Subject(s)
Attention/physiology , Electroencephalography , Magnetic Resonance Imaging , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Visual Perception/physiology , Adolescent , Adult , Female , Healthy Volunteers , Humans , Male
4.
Behav Brain Res ; 396: 112897, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32891649

ABSTRACT

Cholinergic neuromodulation is known to play a key role in visual working memory (VWM) - keeping relevant stimulus representations available for cognitive processes for short time periods (up to a few minutes). Despite the growing body of evidence on how the neural and cognitive mechanisms of VWM dynamically change over retention time, there is mixed evidence available on cholinergic effects as a function of VWM delay period in non-human primates. Using the delayed matching to sample VWM task in rhesus macaques (N = 6), we aimed to characterize VWM maintenance in terms of performance changes as a function of delay duration (across a wide range of delays from 1 to 76 s). Then, we studied how cholinergic neuromodulation influences VWM maintenance using the muscarinic receptor antagonist scopolamine administered alone as transient amnestic treatment, and in combination with two doses of the acetylcholinesterase inhibitor donepezil, a widely used Alzheimer's medication probing for the reversal of scopolamine-induced impairments. Results indicate that scopolamine-induced impairments of VWM maintenance are delay-dependent and specifically affect the 15-33 s time range, suggesting that scopolamine worsens the normal decay of VWM with the passage of time. Donepezil partially rescued the observed scopolamine-induced impairments of VWM performance. These results provide strong behavioral evidence for the role of increased cholinergic tone and muscarinic neuromodulation in the maintenance of VWM beyond a few seconds, in line with our current knowledge on the role of muscarinic acetylcholine receptors in sustained neural activity during VWM delay periods.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory, Short-Term/drug effects , Muscarinic Antagonists/pharmacology , Psychomotor Performance/drug effects , Animals , Behavior, Animal/drug effects , Cholinesterase Inhibitors/administration & dosage , Dementia/drug therapy , Disease Models, Animal , Donepezil/pharmacology , Macaca mulatta , Male , Muscarinic Antagonists/administration & dosage , Pattern Recognition, Visual/drug effects , Scopolamine/pharmacology , Time Factors
5.
Eur J Neurosci ; 52(7): 3776-3789, 2020 10.
Article in English | MEDLINE | ID: mdl-32516489

ABSTRACT

The ability to promptly respond to behaviourally relevant events depends on both general alertness and phasic changes in attentional state driven by temporal expectations. Using a variable foreperiod simple reaction time (RT) task in four adult male rhesus macaques, we investigated the role of the cholinergic system in alertness and temporal expectation. Foreperiod effects on RT reflect temporal expectation, while alertness is quantified as overall response speed. We measured these RT parameters under vehicle treatment and systemic administration of the muscarinic receptor antagonist scopolamine. We also investigated whether and to what extent the effects of scopolamine were reversed by donepezil, a cholinesterase inhibitor widely used for the treatment of dementia. In the control condition, RT showed a continuous decrease as the foreperiod duration increased, which clearly indicated the effect of temporal expectation on RT. This foreperiod effect was mainly detectable on the faster tail of the RT distribution and was eliminated by scopolamine. Furthermore, scopolamine treatment slowed down the average RT. Donepezil treatment was efficient on the slower tail of the RT distribution and improved scopolamine-induced impairments only on the average RT reflecting a general beneficial effect on alertness without any improvement in temporal expectation. The present results highlight the role of the cholinergic system in temporal expectation and alertness in primates and help delineate the efficacy and scope of donepezil and other cholinomimetic agents as cognitive enhancers in present and future clinical practice.


Subject(s)
Cholinesterase Inhibitors , Scopolamine , Animals , Cholinesterase Inhibitors/pharmacology , Donepezil/pharmacology , Macaca mulatta , Male , Reaction Time , Scopolamine/pharmacology
6.
Sci Rep ; 8(1): 18010, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30573783

ABSTRACT

Although mobile phone (MP) use has been steadily increasing in the last decades and similar positive trends are expected for the near future, systematic investigations on neurophysiological and cognitive effects caused by recently developed technological standards for MPs are scarcely available. Here, we investigated the effects of radiofrequency (RF) fields emitted by new-generation mobile technologies, specifically, Universal Mobile Telecommunications System (UMTS) and Long-Term Evolution (LTE), on intrinsic scalp EEG activity in the alpha band (8-12 Hz) and cognitive performance in the Stroop test. The study involved 60 healthy, young-adult university students (34 for UMTS and 26 for LTE) with double-blind administration of Real and Sham exposure in separate sessions. EEG was recorded before, during and after RF exposure, and Stroop performance was assessed before and after EEG recording. Both RF exposure types caused a notable decrease in the alpha power over the whole scalp that persisted even after the cessation of the exposure, whereas no effects were found on any aspects of performance in the Stroop test. The results imply that the brain networks underlying global alpha oscillations might require minor reconfiguration to adapt to the local biophysical changes caused by focal RF exposure mimicking MP use.


Subject(s)
Brain/radiation effects , Cell Phone , Cognition/radiation effects , Electroencephalography/radiation effects , Occupational Exposure , Radio Waves/adverse effects , Adolescent , Adult , Brain/physiology , Cognition/physiology , Electroencephalography/psychology , Electromagnetic Fields/adverse effects , Female , Humans , Male , Occupational Exposure/analysis , Radiation Dosage , Time Factors , Young Adult
7.
Cortex ; 97: 81-95, 2017 12.
Article in English | MEDLINE | ID: mdl-29096198

ABSTRACT

Face perception is accomplished by face-selective neural processes, involving holistic processing that enables highly efficient integration of facial features into a whole-face representation. It has been shown that in face-selective regions of the ventral temporal cortex (VTC), neural resources involved in holistic processing are primarily dedicated to the central portion of the visual field. These findings raise the intriguing possibility that holistic processing might be the privilege of centrally presented faces and could be strongly diminished in the case of peripheral faces. We addressed this question using the face inversion effect (FIE), a well-established marker of holistic face processing. The behavioral results revealed impaired identity discrimination performance for inverted peripheral faces scaled according to the V1 magnification factor, compared to upright presented faces. The size of peripheral FIE was comparable to that found for centrally displayed faces. Face inversion affected the early ERP responses to faces in two time intervals. The earliest FIE was most pronounced in the time window between 130 and 140 msec following stimulus presentation, for both centrally and peripherally displayed faces and in the latter case, it was present only over the contralateral hemisphere. The timing of the next component FIE corresponded closely with the temporal interval of the N170 ERP component and showed strong right hemisphere (RH) lateralization, both when faces were displayed in the left or right visual field (RVF). Furthermore, we also showed that centrally presented face masks impaired peripheral face identity discrimination performance, but did not reduce the magnitude of the FIE. These findings revealed robust behavioral and neural inversion effects for peripheral faces and thus suggest that faces are processed holistically throughout the visual field.


Subject(s)
Evoked Potentials/physiology , Facial Recognition/physiology , Orientation/physiology , Pattern Recognition, Visual/physiology , Adult , Electroencephalography , Face , Female , Functional Laterality/physiology , Humans , Male , Photic Stimulation , Visual Fields/physiology , Young Adult
8.
Vision Res ; 131: 57-66, 2017 02.
Article in English | MEDLINE | ID: mdl-28057578

ABSTRACT

External periodic stimuli entrain brain oscillations and affect perception and attention. It has been shown that background music can change oculomotor behavior and facilitate detection of visual objects occurring on the musical beat. However, whether musical beats in different tempi modulate information sampling differently during natural viewing remains to be explored. Here we addressed this question by investigating how listening to naturalistic drum grooves in two different tempi affects eye movements of participants viewing natural scenes on a computer screen. We found that the beat frequency of the drum grooves modulated the rate of eye movements: fixation durations were increased at the lower beat frequency (1.7Hz) as compared to the higher beat frequency (2.4Hz) and no music conditions. Correspondingly, estimated visual sampling frequency decreased as fixation durations increased with lower beat frequency. These results imply that slow musical beats can retard sampling of visual information during natural viewing by increasing fixation durations.


Subject(s)
Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Eye Movement Measurements/instrumentation , Eye Movements/physiology , Music , Acoustic Stimulation , Adult , Analysis of Variance , Attention , Female , Humans , Male , Psychomotor Performance/physiology
9.
Sci Rep ; 6: 26902, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27231193

ABSTRACT

Reading is a unique human ability that plays a pivotal role in the development and functioning of our modern society. However, its neural basis remains poorly understood since previous research was focused on reading words with fixed gaze. Here we developed a methodological framework for single-trial analysis of fixation onset-related EEG activity (FOREA) that enabled us to investigate visual information processing during natural reading. To reveal the effect of reading skills on orthographic processing during natural reading, we measured how altering the configural properties of the written text by modifying inter-letter spacing affects FOREA. We found that orthographic processing is reflected in FOREA in three consecutive time windows (120-175 ms, 230-265 ms, 345-380 ms after fixation onset) and the magnitude of FOREA effects in the two later time intervals showed a close association with the participants' reading speed: FOREA effects were larger in fast than in slow readers. Furthermore, these expertise-driven configural effects were clearly dissociable from the FOREA signatures of visual perceptual processes engaged to handle the increased crowding (155-220 ms) as a result of decreasing letter spacing. Our findings revealed that with increased reading skills orthographic processing becomes more sensitive to the configural properties of the written text.


Subject(s)
Cognition/physiology , Fixation, Ocular/physiology , Pattern Recognition, Visual/physiology , Reading , Adult , Electroencephalography , Female , Humans , Male
10.
Front Hum Neurosci ; 8: 1048, 2014.
Article in English | MEDLINE | ID: mdl-25628554

ABSTRACT

Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection-similarly to spatial and feature-based attention-gating of visual information processing might involve visual cortical alpha oscillations.

SELECTION OF CITATIONS
SEARCH DETAIL
...