Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Angew Chem Int Ed Engl ; : e202403189, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701048

ABSTRACT

Understanding how reaction heterogeneity impacts cathode materials during Li-ion battery (LIB) electrochemical cycling is pivotal for unraveling their electrochemical performance. Yet, experimentally verifying these reactions has proven to be a challenge. To address this, we employed scanning µ-XRD computed tomography to scrutinize Ni-rich layered LiNi0.6Co0.2Mn0.2O2 (NCM622) and Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 (LLNMO). By harnessing machine learning (ML) techniques, we scrutinized an extensive dataset of µ-XRD patterns, about 100,000 patterns per slice, to unveil the spatial distribution of crystalline structure and microstrain. Our experimental findings unequivocally reveal the distinct behavior of these materials. NCM622 exhibits structural degradation and lattice strain intricately linked to the size of secondary particles. Smaller particles and the surface of larger particles in contact with the carbon/binder matrix experience intensified structural fatigue after long-term cycling. Conversely, both the surface and bulk of LLNMO particles endure severe strain-induced structural degradation during high-voltage cycling, resulting in significant voltage decay and capacity fade. This work holds the potential to fine-tune the microstructure of advanced layered materials and manipulate composite electrode construction in order to enhance the performance of LIBs and beyond.

2.
Fam Cancer ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280980

ABSTRACT

Lynch syndrome (LS; HNPCC) patients carry heterozygous pathogenic germline variants in mismatch repair (MMR) genes, which have also been shown to play an important role in meiosis. Therefore, it was hypothesized, that LS might be associated with a higher risk for premature ovarian failure (POF) or earlier menopause. Data on medical gynaecological history, cancer diagnoses and therapy were collected from 167 female LS patients and compared to a population-based control cohort. There was no difference between the age of menopause in patients compared to controls and no evidence for a higher risk of POF in LS patients. However, around one third (35%) of the probands have already had premenopausal cancer and mostly cancer-related treatment affecting fertility before the age of 45 years. Therefore, childbearing time might still be limited in these patients, especially due to the premenopausal cancer risk. LS patients should be informed in time about the elevated premenopausal cancer risks and the possible impact on family planning. This is particularly relevant since the average childbearing age has increased during the last decades.

3.
ChemSusChem ; 17(2): e202300809, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37721363

ABSTRACT

In recent years, there is growing interest in solid-state electrolytes due to their many promising properties, making them key to the future of battery technology. This future depends among other things on easy processing technologies for the solid electrolyte. The sodium superionic conductor (NASICON) Na3 Zr2 Si2 PO12 is a promising sodium solid electrolyte; however, reported methods of synthesis are time consuming. To this effect, attempt was made to develop a simple time efficient alternative processing route. Firstly, a comparative study between a new method and commonly reported methods was carried out to gain a clear insight into the mechanism of formation of sodium superionic conductors (NASICON). It was observed that through a careful selection of precursors, and the use of high-energy milling (HEM) the NASICON conversion process was enhanced and optimized, this reduces the processing time and required energy, opening up a new alternative route for synthesis. The obtained solid electrolyte was stable during Na cycling vs. Na-metal at 1 mA cm-1 , and a room temperature conductivity of 1.8 mS cm-1 was attained.

4.
Biochemistry ; 62(16): 2442-2449, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37526986

ABSTRACT

The interplay between active-site chemistry and functionally relevant enzyme motions can provide useful insights into selective enzyme modulation. Modulation of the hypoxia-sensing function of factor-inhibiting-HIF-1 (FIH) enzyme is a potential therapeutic strategy in disease states such as ischemia and cancer. The hypoxia-sensing function of FIH relies in major part on the tight coupling of the first half of the catalytic mechanism which involves O2 activation and eventual succinate production to the second half which involves HIF-1α/CTAD substrate hydroxylation. In this study, we demonstrate the role of a loop hinge domain in FIH (FIH102-118) called the 100s loop in maintaining this particular tight coupling. Molecular dynamics patterns from Gaussian Network Model (iGNM) database analysis of FIH identified the 100s loop as one dynamic domain containing a hinge residue (Tyr102) with a potential substrate positioning role. Enzymological and biophysical studies of the 100s loop point mutants revealed altered enzyme kinetics with the exception of the conservative FIH mutant Y102F, which suggests a sterics-related role for this residue. Removal of the bulk of Tyr102 (Y102A) resulted in succinate production, autohydroxylation, and an O2 binding environment comparable to wild-type FIH. However, the HIF-1α/CTAD substrate hydroxylation of this mutant was significantly reduced which implies that (1) the FIH loop hinge residue Tyr102 does not affect O2 activation, (2) the stacking steric interaction of Tyr102 is important in substrate positioning for productive hydroxylation, and (3) Tyr102 is important for the synchronization of O2 activation and substrate hydroxylation.

5.
J Appl Crystallogr ; 56(Pt 4): 1242-1251, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555212

ABSTRACT

Complex functional materials play a crucial role in a broad range of energy-related applications and in general for materials science. Revealing the structural mechanisms is challenging due to highly correlated coexisting phases and microstructures, especially for in situ or operando investigations. Since the grain sizes influence the properties, these microstructural features further complicate investigations at synchrotrons due to the limitations of illuminated sample volumes. In this study, it is demonstrated that such complex functional materials with highly correlated coexisting phases can be investigated under in situ conditions with neutron diffraction. For large grain sizes, these experiments are valuable methods to reveal the structural mechanisms. For an example of in situ experiments on barium titanate with an applied electric field, details of the electric-field-induced phase transformation depending on grain size and frequency are revealed. The results uncover the strain mechanisms in barium titanate and elucidate the complex interplay of stresses in relation to grain sizes as well as domain-wall densities and mobilities.

6.
Small ; 19(44): e2304102, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37394707

ABSTRACT

Herein, the electrochemical properties and reaction mechanism of Li3-2 x Cax V2 (PO4 )3 /C (x = 0, 0.5, 1, and 1.5) as negative electrode materials for sodium-ion/potassium-ion batteries (SIBs/PIBs) are investigated. All samples undergo a mixed contribution of diffusion-controlled and pseudocapacitive-type processes in SIBs and PIBs via Trasatti Differentiation Method, while the latter increases with Ca content increase. Among them, Li3 V2 (PO4 )3 /C exhibits the highest reversible capacity in SIBs and PIBs, while Ca1.5 V2 (PO4 )3 /C shows the best rate performance with a capacity retention of 46% at 20 C in SIBs and 47% at 10 C in PIBs. This study demonstrates that the specific capacity of this type of material in SIBs and PIBs does not increase with the Ca-content as previously observed in lithium-ion system, but the stability and performance at a high C-rate can be improved by replacing Li+ with Ca2+ . This indicates that the insertion of different monovalent cations (Na+ /K+ ) can strongly influence the redox reaction and structure evolution of the host materials, due to the larger ion size of Na+ and K+ and their different kinetic properties with respect to Li+ . Furthermore, the working mechanism of both LVP/C and Ca1.5 V2 (PO4 )3 /C in SIBs are elucidated via in operando synchrotron diffraction and in operando X-ray absorption spectroscopy.

8.
ACS Appl Mater Interfaces ; 15(23): 28332-28348, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37253453

ABSTRACT

The realization of the broad range of application of MXenes relies on the successful and reproducible synthesis of quality materials of tailored properties. To date, most MXenes have been produced making use of acid-based etching methods, yet an in-depth understanding of etching processes is lacking. Herein, we have engaged in a comprehensive study of the multiple variables involved in the synthesis of V2CTx with focus on the properties of etched materials. Two main sets of experiments were considered, each using a different V2AlC precursor and a range of synthesis variables including reaction time and temperature, mixing rate, and type of acid. Correlations of synthesis conditions-materials properties were investigated using a broad range of characterization techniques including analytical methods, scanning and transmission electron microscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Findings indicated the crucial relevance of properties of the MAX precursor such as elemental composition, particle size, and crystal structure on etching processes and properties of etched materials. Particularly, depending on the MAX precursor, two etching patterns were identified, core-shell and plate-by-plate, the latter describing a more efficient etching. Combined studies of elemental composition, crystal structure, and yield quantification allowed us to evaluate the effectiveness of etching processes. XRD studies revealed key crystal-structure-type of acid correlations showing advantages of using a HF/HCl mix over only HF. Analytical methods XRD and XPS delivered insights into undergoing chemical processes and their influence on bulk and surface chemistry of etched materials. The relevance for reaction kinetics of highly correlated variables such as reaction vessel dimensions, mixing efficiency, and reaction temperature was recognized. For the first time, a MXene synthesis has been investigated comprehensively highlighting its multivariable nature and the high variable intercorrelation, opening up venues for further investigation on MAX and MXene synthesis.

9.
EBioMedicine ; 92: 104616, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209533

ABSTRACT

BACKGROUND: Gastric cancer (GC) is clinically heterogenous according to location (cardia/non-cardia) and histopathology (diffuse/intestinal). We aimed to characterize the genetic risk architecture of GC according to its subtypes. Another aim was to examine whether cardia GC and oesophageal adenocarcinoma (OAC) and its precursor lesion Barrett's oesophagus (BO), which are all located at the gastro-oesophageal junction (GOJ), share polygenic risk architecture. METHODS: We did a meta-analysis of ten European genome-wide association studies (GWAS) of GC and its subtypes. All patients had a histopathologically confirmed diagnosis of gastric adenocarcinoma. For the identification of risk genes among GWAS loci we did a transcriptome-wide association study (TWAS) and expression quantitative trait locus (eQTL) study from gastric corpus and antrum mucosa. To test whether cardia GC and OAC/BO share genetic aetiology we also used a European GWAS sample with OAC/BO. FINDINGS: Our GWAS consisting of 5816 patients and 10,999 controls highlights the genetic heterogeneity of GC according to its subtypes. We newly identified two and replicated five GC risk loci, all of them with subtype-specific association. The gastric transcriptome data consisting of 361 corpus and 342 antrum mucosa samples revealed that an upregulated expression of MUC1, ANKRD50, PTGER4, and PSCA are plausible GC-pathomechanisms at four GWAS loci. At another risk locus, we found that the blood-group 0 exerts protective effects for non-cardia and diffuse GC, while blood-group A increases risk for both GC subtypes. Furthermore, our GWAS on cardia GC and OAC/BO (10,279 patients, 16,527 controls) showed that both cancer entities share genetic aetiology at the polygenic level and identified two new risk loci on the single-marker level. INTERPRETATION: Our findings show that the pathophysiology of GC is genetically heterogenous according to location and histopathology. Moreover, our findings point to common molecular mechanisms underlying cardia GC and OAC/BO. FUNDING: German Research Foundation (DFG).


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Genome-Wide Association Study , Genetic Heterogeneity , Barrett Esophagus/genetics , Adenocarcinoma/pathology , Esophageal Neoplasms/genetics , Risk Factors
10.
Commun Chem ; 6(1): 49, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977798

ABSTRACT

The increasing lithium-ion battery production calls for profitable and ecologically benign technologies for their recycling. Unfortunately, all used recycling technologies are always associated with large energy consumption and utilization of corrosive reagents, which creates a risk to the environment. Herein we report a highly efficient mechanochemically induced acid-free process for recycling Li from cathode materials of different chemistries such as LiCoO2, LiMn2O4, Li(CoNiMn)O2, and LiFePO4. The introduced technology uses Al as a reducing agent in the mechanochemical reaction. Two different processes have been developed to regenerate lithium and transform it into pure Li2CO3. The mechanisms of mechanochemical transformation, aqueous leaching, and lithium purification were investigated. The presented technology achieves a recovery rate for Li of up to 70% without applying any corrosive leachates or utilizing high temperatures. The key innovation is that the regeneration of lithium was successfully performed for all relevant cathode chemistries, including their mixture.

11.
Adv Sci (Weinh) ; 10(11): e2207283, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36794292

ABSTRACT

Polyanion-type phosphate materials, such as M3 V2 (PO4 )3 (M = Li/Na/K), are promising as insertion-type negative electrodes for monovalent-ion batteries including Li/Na/K-ion batteries (lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (PIBs)) with fast charging/discharging and distinct redox peaks. However, it remains a great challenge to understand the reaction mechanism of materials upon monovalent-ion insertion. Here, triclinic Mg3 V4 (PO4 )6 /carbon composite (MgVP/C) with high thermal stability is synthesized via ball-milling and carbon-thermal reduction method and applied as a pseudocapacitive negative electrode in LIBs, SIBs, and PIBs. In operando and ex situ studies demonstrate the guest ion-dependent reaction mechanisms of MgVP/C upon monovalent-ion storage due to different sizes. MgVP/C undergoes an indirect conversion reaction to form Mg0 , V0 , and Li3 PO4 in LIBs, while in SIBs/PIBs the material only experiences a solid solution with the reduction of V3+ to V2+ . Moreover, in LIBs, MgVP/C delivers initial lithiation/delithiation capacities of 961/607 mAh g-1 (30/19 Li+ ions) for the first cycle, despite its low initial Coulombic efficiency, fast capacity decay for the first 200 cycles, and limited reversible insertion/deinsertion of 2 Na+ /K+ ions in SIBs/PIBs. This work reveals a new pseudocapacitive material and provides an advanced understanding of polyanion phosphate negative material for monovalent-ion batteries with guest ion-dependent energy storage mechanisms.

12.
Methods Enzymol ; 679: 363-380, 2023.
Article in English | MEDLINE | ID: mdl-36682871

ABSTRACT

Primary kinetic isotope effects (KIEs) provide unique insight into enzymatic reactions, as they can reveal rate-limiting steps and detailed chemical mechanisms. HIF hydroxylases, part of a family of 2-oxoglutarate (2OG) oxygenases are central to the regulation of many crucial biological processes through O2-sensing, but present a challenge to monitor due to the large size of the protein substrate and the similarity between native and hydroxylated substrate. MALDI-TOF MS is a convenient tool to measure peptide masses, which can also be used to measure the discontinuous kinetics of peptide hydroxylation for Factor Inhibiting HIF (FIH). Using this technique, rate data can be observed from the mole-fraction of CTAD and CTAD-OH in small volumes, allowing noncompetitive H/D KIEs to be measured. Slow dCTAD substrate leads to extensive uncoupling of O2 consumption from peptide hydroxylation, leading to enzyme autohydroxylation, which is observed using UV-vis spectroscopy. Simultaneously measuring both the normal product, CTAD-OH, and the uncoupled product, autohydroxylated enzyme, the KIE on the microscopic step of hydrogen atom transfer (HAT) can be estimated. MALDI-MS analysis is a strong method for monitoring reactions that hydroxylate peptides, and can be generalized to other similar reactions, and simultaneous kinetic detection of branched products can provide valuable insight on microscopic KIEs at intermediate mechanistic steps.


Subject(s)
Peptides , Repressor Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Repressor Proteins/chemistry , Kinetics , Hydroxylation , Peptides/metabolism
13.
Mol Genet Genomic Med ; 11(3): e2109, 2023 03.
Article in English | MEDLINE | ID: mdl-36468602

ABSTRACT

BACKGROUND: Nonsyndromic cleft lip with/without cleft palate (nsCL/P) is a congenital malformation of multifactorial etiology. Research has identified >40 genome-wide significant risk loci, which explain less than 40% of nsCL/P heritability. Studies show that some of the hidden heritability is explained by rare penetrant variants. METHODS: To identify new candidate genes, we searched for highly penetrant de novo variants (DNVs) in 50 nsCL/P patient/parent-trios with a low polygenic risk for the phenotype (discovery). We prioritized DNV-carrying candidate genes from the discovery for resequencing in independent cohorts of 1010 nsCL/P patients of diverse ethnicities and 1574 population-matched controls (replication). Segregation analyses and rare variant association in the replication cohort, in combination with additional data (genome-wide association data, expression, protein-protein-interactions), were used for final prioritization. CONCLUSION: In the discovery step, 60 DNVs were identified in 60 genes, including a variant in the established nsCL/P risk gene CDH1. Re-sequencing of 32 prioritized genes led to the identification of 373 rare, likely pathogenic variants. Finally, MDN1 and PAXIP1 were prioritized as top candidates. Our findings demonstrate that DNV detection, including polygenic risk score analysis, is a powerful tool for identifying nsCL/P candidate genes, which can also be applied to other multifactorial congenital malformations.


Subject(s)
Cleft Lip , Cleft Palate , Humans , Cleft Palate/genetics , Cleft Lip/genetics , Genome-Wide Association Study , DNA-Binding Proteins/genetics , Risk Factors
14.
Angew Chem Int Ed Engl ; 62(12): e202214880, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36545843

ABSTRACT

Ni-rich layered oxides are one of the most attractive cathode materials in high-energy-density lithium-ion batteries, their degradation mechanisms are still not completely elucidated. Herein, we report a strong dependence of degradation pathways on the long-range cationic disordering of Co-free Ni-rich Li1-m (Ni0.94 Al0.06 )1+m O2 (NA). Interestingly, a disordered layered phase with lattice mismatch can be easily formed in the near-surface region of NA particles with very low cation disorder (NA-LCD, m≤0.06) over electrochemical cycling, while the layered structure is basically maintained in the core of particles forming a "core-shell" structure. Such surface reconstruction triggers a rapid capacity decay during the first 100 cycles between 2.7 and 4.3 V at 1 C or 3 C. On the contrary, the local lattice distortions are gradually accumulated throughout the whole NA particles with higher degrees of cation disorder (NA-HCD, 0.06≤m≤0.15) that lead to a slow capacity decay upon cycling.

15.
Pest Manag Sci ; 79(2): 507-519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36178376

ABSTRACT

BACKGROUND: Target site resistance to herbicides that inhibit protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) has been described mainly in broadleaf weeds based on mutations in the gene designated protoporphyrinogen oxidase 2 (PPO2) and in one monocot weed species in protoporphyrinogen oxidase 1 (PPO1). To control PPO target site resistant weeds in future it is important to design new PPO-inhibiting herbicides that can control problematic weeds expressing mutant PPO enzymes. In this study, we assessed the efficacy of a new triazinone-type inhibitor, trifludimoxazin, to inhibit PPO2 enzymes carrying target site mutations in comparison with three widely used PPO-inhibiting herbicides. RESULTS: Mutated Amaranthus spp. PPO2 enzymes were expressed in Escherichia coli, purified and measured biochemically for activity and inhibition kinetics, and used for complementation experiments in an E. coli hemG mutant that lacks the corresponding microbial PPO gene function. In addition, we used ectopic expression in Arabidopsis and structural PPO protein modeling to support the enzyme inhibition study. The generated data strongly suggest that trifludimoxazin is a strong inhibitor both at the enzyme level and in transgenics Arabidopsis ectopically expressing PPO2 target site mutations. CONCLUSION: Trifludimoxazin is a potent PPO-inhibiting herbicide that inhibits various PPO2 enzymes carrying target site mutations and could be used as a chemical-based control strategy to mitigate the widespread occurrence of PPO target site resistance as well as weeds that have evolved resistance to other herbicide mode of actions. © 2022 BASF SE and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Arabidopsis , Herbicides , Protoporphyrinogen Oxidase , Arabidopsis/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation , Herbicides/pharmacology , Plant Weeds/genetics , Herbicide Resistance/genetics
16.
Front Bioeng Biotechnol ; 11: 1319916, 2023.
Article in English | MEDLINE | ID: mdl-38390601

ABSTRACT

The current trend in biopharmaceutical drug manufacturing is towards increasing potency and complexity of products such as peptide scaffolds, oligonucleotides and many more. Therefore, a universal affinity purification step is important in order to meet the requirements for cost and time efficient drug production. By using a self-splicing intein affinity tag, a purification template is generated that allows for a universal chromatographic affinity capture step to generate a tagless target protein without the use of proteases for further tag removal. This study describes the successful implementation of gp41-1-based split inteins in a chromatographic purification process for, e.g., E. coli-derived targets. The tagless target is generated in a single-step purification run. The on-column cleavage is induced by triggering a simple pH change in the buffer conditions without the need for additives such as Zn2+ or thiols. This system has proven to be reusable for at least ten purification cycles that use 150 mM H3PO4 as the cleaning agent.

17.
BMC Genomics ; 23(1): 747, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357860

ABSTRACT

BACKGROUND: Understanding the micro--evolutionary response of populations to demographic declines is a major goal in evolutionary and conservation biology. In small populations, genetic drift can lead to an accumulation of deleterious mutations, which will increase the risk of extinction. However, demographic recovery can still occur after extreme declines, suggesting that natural selection may purge deleterious mutations, even in extremely small populations. The Chatham Island black robin (Petroica traversi) is arguably the most inbred bird species in the world. It avoided imminent extinction in the early 1980s and after a remarkable recovery from a single pair, a second population was established and the two extant populations have evolved in complete isolation since then. Here, we analysed 52 modern and historical genomes to examine the genomic consequences of this extreme bottleneck and the subsequent translocation. RESULTS: We found evidence for two-fold decline in heterozygosity and three- to four-fold increase in inbreeding in modern genomes. Moreover, there was partial support for temporal reduction in total load for detrimental variation. In contrast, compared to historical genomes, modern genomes showed a significantly higher realised load, reflecting the temporal increase in inbreeding. Furthermore, the translocation induced only small changes in the frequency of deleterious alleles, with the majority of detrimental variation being shared between the two populations. CONCLUSION: Our results highlight the dynamics of mutational load in a species that recovered from the brink of extinction, and show rather limited temporal changes in mutational load. We hypothesise that ancestral purging may have been facilitated by population fragmentation and isolation on several islands for thousands of generations and may have already reduced much of the highly deleterious load well before human arrival and introduction of pests to the archipelago. The majority of fixed deleterious variation was shared between the modern populations, but translocation of individuals with low mutational load could possibly mitigate further fixation of high-frequency deleterious variation.


Subject(s)
Genetic Drift , Inbreeding , Humans , Selection, Genetic , Alleles , Genomics , Genetic Variation
18.
Cancer Epidemiol Biomarkers Prev ; 31(9): 1735-1745, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35709760

ABSTRACT

BACKGROUND: Over 20 susceptibility single-nucleotide polymorphisms (SNP) have been identified for esophageal adenocarcinoma (EAC) and its precursor, Barrett esophagus (BE), explaining a small portion of heritability. METHODS: Using genetic data from 4,323 BE and 4,116 EAC patients aggregated by international consortia including the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON), we conducted a comprehensive transcriptome-wide association study (TWAS) for BE/EAC, leveraging Genotype Tissue Expression (GTEx) gene-expression data from six tissue types of plausible relevance to EAC etiology: mucosa and muscularis from the esophagus, gastroesophageal (GE) junction, stomach, whole blood, and visceral adipose. Two analytical approaches were taken: standard TWAS using the predicted gene expression from local expression quantitative trait loci (eQTL), and set-based SKAT association using selected eQTLs that predict the gene expression. RESULTS: Although the standard approach did not identify significant signals, the eQTL set-based approach identified eight novel associations, three of which were validated in independent external data (eQTL SNP sets for EXOC3, ZNF641, and HSP90AA1). CONCLUSIONS: This study identified novel genetic susceptibility loci for EAC and BE using an eQTL set-based genetic association approach. IMPACT: This study expanded the pool of genetic susceptibility loci for EAC and BE, suggesting the potential of the eQTL set-based genetic association approach as an alternative method for TWAS analysis.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Genetic Predisposition to Disease , Humans , Quantitative Trait Loci
19.
Nat Commun ; 13(1): 2261, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477711

ABSTRACT

Accurate capacity estimation is crucial for the reliable and safe operation of lithium-ion batteries. In particular, exploiting the relaxation voltage curve features could enable battery capacity estimation without additional cycling information. Here, we report the study of three datasets comprising 130 commercial lithium-ion cells cycled under various conditions to evaluate the capacity estimation approach. One dataset is collected for model building from batteries with LiNi0.86Co0.11Al0.03O2-based positive electrodes. The other two datasets, used for validation, are obtained from batteries with LiNi0.83Co0.11Mn0.07O2-based positive electrodes and batteries with the blend of Li(NiCoMn)O2 - Li(NiCoAl)O2 positive electrodes. Base models that use machine learning methods are employed to estimate the battery capacity using features derived from the relaxation voltage profiles. The best model achieves a root-mean-square error of 1.1% for the dataset used for the model building. A transfer learning model is then developed by adding a featured linear transformation to the base model. This extended model achieves a root-mean-square error of less than 1.7% on the datasets used for the model validation, indicating the successful applicability of the capacity estimation approach utilizing cell voltage relaxation.

20.
ACS Appl Mater Interfaces ; 14(6): 7856-7868, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35107246

ABSTRACT

Careful development and optimization of negative electrode (anode) materials for Na-ion batteries (SIBs) are essential, for their widespread applications requiring a long-term cycling stability. BiFeO3 (BFO) with a LiNbO3-type structure (space group R3c) is an ideal negative electrode model system as it delivers a high specific capacity (770 mAh g-1), which is proposed through a conversion and alloying mechanism. In this work, BFO is synthesized via a sol-gel method and investigated as a conversion-type anode model-system for sodium-ion half-cells. As there is a difference in the first and second cycle profiles in the cyclic voltammogram, the operating mechanism of charge-discharge is elucidated using in operando X-ray absorption spectroscopy. In the first discharge, Bi is found to contribute toward the electrochemical activity through a conversion mechanism (Bi3+ → Bi0), followed by the formation of Na-Bi intermetallic compounds. Evidence for involvement of Fe in the charge storage mechanism through conversion of the oxide (Fe3+) form to metallic Fe and back during discharging/charging is also obtained, which is absent in previous literature reports. Reversible dealloying and subsequent oxidation of Bi and oxidation of Fe are observed in the following charge cycle. In the second discharge cycle, a reduction of Bi and Fe oxides is observed. Changes in the oxidation states of Bi and Fe, and the local coordination changes during electrochemical cycling are discussed in detail. Furthermore, the optimization of cycling stability of BFO is carried out by varying binders and electrolyte compositions. Based on that, electrodes prepared with the Na-carboxymethyl cellulose (CMC) binder are chosen for optimization of the electrolyte composition. BFO-CMC electrodes exhibit the best electrochemical performance in electrolytes containing fluoroethylene carbonate (FEC) as the additive. BFO-CMC electrodes deliver initial capacity values of 635 and 453 mAh g-1 in the Na-insertion (discharge) and deinsertion (charge) processes, respectively, in the electrolyte composition of 1 M NaPF6 in EC/DEC (1:1, v/v) with a 2% FEC additive. The capacity values stabilize around 10th cycle and capacity retention of 73% is observed after 60 cycles with respect to the 10th cycle charge capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...