Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 61(2)2023 02.
Article in English | MEDLINE | ID: mdl-36396145

ABSTRACT

This European Respiratory Society guideline is dedicated to the provision of good quality recommendations in lung cancer care. All the clinical recommendations contained were based on a comprehensive systematic review and evidence syntheses based on eight PICO (Patients, Intervention, Comparison, Outcomes) questions. The evidence was appraised in compliance with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Evidence profiles and the GRADE Evidence to Decision frameworks were used to summarise results and to make the decision-making process transparent. A multidisciplinary Task Force panel of lung cancer experts formulated and consented the clinical recommendations following thorough discussions of the systematic review results. In particular, we have made recommendations relating to the following quality improvement measures deemed applicable to routine lung cancer care: 1) avoidance of delay in the diagnostic and therapeutic period, 2) integration of multidisciplinary teams and multidisciplinary consultations, 3) implementation of and adherence to lung cancer guidelines, 4) benefit of higher institutional/individual volume and advanced specialisation in lung cancer surgery and other procedures, 5) need for pathological confirmation of lesions in patients with pulmonary lesions and suspected lung cancer, and histological subtyping and molecular characterisation for actionable targets or response to treatment of confirmed lung cancers, 6) added value of early integration of palliative care teams or specialists, 7) advantage of integrating specific quality improvement measures, and 8) benefit of using patient decision tools. These recommendations should be reconsidered and updated, as appropriate, as new evidence becomes available.


Subject(s)
Lung Neoplasms , Lung , Humans , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Thorax , Societies, Medical
2.
Clin Neurophysiol ; 130(8): 1375-1386, 2019 08.
Article in English | MEDLINE | ID: mdl-31220698

ABSTRACT

OBJECTIVES: We investigated blood oxygenation level-dependent (BOLD) brain activity changes in wakefulness and light sleep and in relation to those associated with the posterior alpha rhythm, the most prominent feature of the clinical EEG. Studies have reported different sets of brain regions changing their oxygen consumption with waxing and waning alpha oscillations. Here, we hypothesize that these dissimilar activity patterns reflect different wakefulness-dependent brain states. METHODS: We recorded BOLD signal changes and electroencephalography (EEG) simultaneously in 149 subjects at rest. Based on American Academy of Sleep Medicine criteria, we selected subjects exhibiting wakefulness or light sleep (N1). We identified brain regions in which BOLD signal changes correlated with (i) clinical sleep stages, (ii) alpha band power and (iii) a multispectral EEG index, respectively. RESULTS: During light sleep, we found increased BOLD activity in parieto-occipital regions. In wakefulness compared to light sleep, we revealed BOLD signal increases in the thalamus. The multispectral EEG-index revealed hippocampal activity changes in light sleep not reported before. CONCLUSION: Changes in alpha oscillations reflect different brain states associated with different levels of wakefulness and thalamic activity. We can link the previously described parieto-occipital pattern to drowsiness. Additionally, in that stage, we identify hippocampal activity fluctuations. SIGNIFICANCE: Thalamic activity varies with early changes of wakefulness, which is important to consider in resting state experiments. The EEG-indexed activation of the hippocampus during light sleep suggests that memory encoding might already take place during this early stage of sleep.


Subject(s)
Alpha Rhythm , Cortical Synchronization , Hippocampus/physiology , Adult , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Sleep , Wakefulness
3.
Front Comput Neurosci ; 12: 70, 2018.
Article in English | MEDLINE | ID: mdl-30210325

ABSTRACT

We analyse statistical and information-theoretical properties of EEG microstate sequences, as seen through the lens of five different clustering algorithms. Microstate sequences are computed for n = 20 resting state EEG recordings during wakeful rest. The input for all clustering algorithms is the set of EEG topographic maps obtained at local maxima of the spatial variance. This data set is processed by two classical microstate clustering algorithms (1) atomize and agglomerate hierarchical clustering (AAHC) and (2) a modified K-means algorithm, as well as by (3) K-medoids, (4) principal component analysis (PCA) and (5) fast independent component analysis (Fast-ICA). Using this technique, EEG topographies can be substituted with microstate labels by competitive fitting based on spatial correlation, resulting in a symbolic, non-metric time series, the microstate sequence. Microstate topographies and symbolic time series are further analyzed statistically, including static and dynamic properties. Static properties, which do not contain information about temporal dependencies of the microstate sequence include the maximum similarity of microstate maps within and between the tested clustering algorithms, the global explained variance and the Shannon entropy of the microstate sequences. Dynamic properties are sensitive to temporal correlations between the symbols and include the mixing time of the microstate transition matrix, the entropy rate of the microstate sequences and the location of the first local maximum of the autoinformation function. We also test the Markov property of microstate sequences, the time stationarity of the transition matrix and detect periodicities by means of time-lagged mutual information. Finally, possible long-range correlations of microstate sequences are assessed via Hurst exponent estimation. We find that while static properties partially reflect properties of the clustering algorithms, information-theoretical quantities are largely invariant with respect to the clustering method used. As each clustering algorithm has its own profile of computational speed, ease of implementation, determinism vs. stochasticity and theoretical underpinnings, our results convey a positive message concerning the free choice of method and the comparability of results obtained from different algorithms. The invariance of these quantities implies that the tested properties are algorithm-independent, inherent features of resting state EEG derived microstate sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...