Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Microbiome ; 12(1): 85, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725043

ABSTRACT

BACKGROUND: Left ventricular diastolic dysfunction (LVDD) is an important precursor of heart failure (HF), but little is known about its relationship with gut dysbiosis and microbial-related metabolites. By leveraging the multi-omics data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a study with population at high burden of LVDD, we aimed to characterize gut microbiota associated with LVDD and identify metabolite signatures of gut dysbiosis and incident LVDD. RESULTS: We included up to 1996 Hispanic/Latino adults (mean age: 59.4 years; 67.1% female) with comprehensive echocardiography assessments, gut microbiome, and blood metabolome data. LVDD was defined through a composite criterion involving tissue Doppler assessment and left atrial volume index measurements. Among 1996 participants, 916 (45.9%) had prevalent LVDD, and 212 out of 594 participants without LVDD at baseline developed incident LVDD over a median 4.3 years of follow-up. Using multivariable-adjusted analysis of compositions of microbiomes (ANCOM-II) method, we identified 7 out of 512 dominant gut bacterial species (prevalence > 20%) associated with prevalent LVDD (FDR-q < 0.1), with inverse associations being found for Intestinimonas_massiliensis, Clostridium_phoceensis, and Bacteroide_coprocola and positive associations for Gardnerella_vaginali, Acidaminococcus_fermentans, Pseudomonas_aeruginosa, and Necropsobacter_massiliensis. Using multivariable adjusted linear regression, 220 out of 669 circulating metabolites with detection rate > 75% were associated with the identified LVDD-related bacterial species (FDR-q < 0.1), with the majority being linked to Intestinimonas_massiliensis, Clostridium_phoceensis, and Acidaminococcus_fermentans. Furthermore, 46 of these bacteria-associated metabolites, mostly glycerophospholipids, secondary bile acids, and amino acids, were associated with prevalent LVDD (FDR-q < 0.1), 21 of which were associated with incident LVDD (relative risk ranging from 0.81 [p = 0.001, for guanidinoacetate] to 1.25 [p = 9 × 10-5, for 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4)]). The inclusion of these 21 bacterial-related metabolites significantly improved the prediction of incident LVDD compared with a traditional risk factor model (the area under the receiver operating characteristic curve [AUC] = 0.73 vs 0.70, p = 0.001). Metabolite-based proxy association analyses revealed the inverse associations of Intestinimonas_massilliensis and Clostridium_phoceensis and the positive association of Acidaminococcus_fermentans with incident LVDD. CONCLUSION: In this study of US Hispanics/Latinos, we identified multiple gut bacteria and related metabolites linked to LVDD, suggesting their potential roles in this preclinical HF entity. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Hispanic or Latino , Ventricular Dysfunction, Left , Humans , Female , Middle Aged , Male , Ventricular Dysfunction, Left/microbiology , Ventricular Dysfunction, Left/blood , United States , Dysbiosis/microbiology , Aged , Bacteria/classification , Bacteria/isolation & purification , Metabolome , Echocardiography
3.
Genome Med ; 16(1): 59, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643166

ABSTRACT

BACKGROUND: Gut dysbiosis has been linked with both HIV infection and diabetes, but its interplay with metabolic and inflammatory responses in diabetes, particularly in the context of HIV infection, remains unclear. METHODS: We first conducted a cross-sectional association analysis to characterize the gut microbial, circulating metabolite, and immune/inflammatory protein features associated with diabetes in up to 493 women (~ 146 with prevalent diabetes with 69.9% HIV +) of the Women's Interagency HIV Study. Prospective analyses were then conducted to determine associations of identified metabolites with incident diabetes over 12 years of follow-up in 694 participants (391 women from WIHS and 303 men from the Multicenter AIDS Cohort Study; 166 incident cases were recorded) with and without HIV infection. Mediation analyses were conducted to explore whether gut bacteria-diabetes associations are explained by altered metabolites and proteins. RESULTS: Seven gut bacterial genera were identified to be associated with diabetes (FDR-q < 0.1), with positive associations for Shigella, Escherichia, Megasphaera, and Lactobacillus, and inverse associations for Adlercreutzia, Ruminococcus, and Intestinibacter. Importantly, the associations of most species, especially Adlercreutzia and Ruminococcus, were largely independent of antidiabetic medications use. Meanwhile, 18 proteins and 76 metabolites, including 3 microbially derived metabolites (trimethylamine N-oxide, phenylacetylglutamine (PAGln), imidazolepropionic acid (IMP)), 50 lipids (e.g., diradylglycerols (DGs) and triradylglycerols (TGs)) and 23 non-lipid metabolites, were associated with diabetes (FDR-q < 0.1), with the majority showing positive associations and more than half of them (59/76) associated with incident diabetes. In mediation analyses, several proteins, especially interleukin-18 receptor 1 and osteoprotegerin, IMP and PAGln partially mediate the observed bacterial genera-diabetes associations, particularly for those of Adlercreutzia and Escherichia. Many diabetes-associated metabolites and proteins were altered in HIV, but no effect modification on their associations with diabetes was observed by HIV. CONCLUSION: Among individuals with and without HIV, multiple gut bacterial genera, blood metabolites, and proinflammatory proteins were associated with diabetes. The observed mediated effects by metabolites and proteins in genera-diabetes associations highlighted the potential involvement of inflammatory and metabolic perturbations in the link between gut dysbiosis and diabetes in the context of HIV infection.


Subject(s)
Diabetes Mellitus , HIV Infections , Male , Humans , Female , HIV Infections/drug therapy , Prospective Studies , Cohort Studies , Dysbiosis/complications , Cross-Sectional Studies , Bacteria
4.
medRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645157

ABSTRACT

Background: We investigated the association between dietary nitrate intake and early clinical cardiometabolic risk biomarkers, and explored whether the oral microbiome modifies the association between dietary nitrate intake and cardiometabolic biomarkers. Methods: Cross-sectional data from 668 (mean [SD] age 31 [9] years, 73% women) participants was analyzed. Dietary nitrate intakes and alternative healthy eating index (AHEI) scores were calculated from food frequency questionnaire responses and a validated US food database. Subgingival 16S rRNA microbial genes (Illumina, MiSeq) were sequenced, and PICRUSt2 estimated metagenomic content. The Microbiome Induced Nitric oxide Enrichment Score (MINES) was calculated as a microbial gene abundance ratio representing enhanced net capacity for NO generation. Cardiometabolic risk biomarkers included systolic and diastolic blood pressure, HbA1c, glucose, insulin, and insulin resistance (HOMA-IR), and were regressed on nitrate intake tertiles in adjusted multivariable linear models. Results: Mean nitrate intake was 190[171] mg/day. Higher nitrate intake was associated with lower insulin, and HOMA-IR but particularly among participants with low abundance of oral nitrite enriching bacteria. For example, among participants with a low MINES, mean insulin[95%CI] levels in high vs. low dietary nitrate consumers were 5.8[5.3,6.5] vs. 6.8[6.2,7.5] (p=0.004) while respective insulin levels were 6.0[5.4,6.6] vs. 5.9[5.3,6.5] (p=0.76) among partcipants with high MINES (interaction p=0.02). Conclusion: Higher dietary nitrate intake was only associated with lower insulin and insulin resistance among individuals with reduced capacity for oral microbe-induced nitrite enrichment. These findings have implications for future precision medicine-oriented approaches that might consider assessing the oral microbiome prior to enrollment into dietary interventions or making dietary recommendations.

5.
Nat Biotechnol ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622344

ABSTRACT

Citizen science video games are designed primarily for users already inclined to contribute to science, which severely limits their accessibility for an estimated community of 3 billion gamers worldwide. We created Borderlands Science (BLS), a citizen science activity that is seamlessly integrated within a popular commercial video game played by tens of millions of gamers. This integration is facilitated by a novel game-first design of citizen science games, in which the game design aspect has the highest priority, and a suitable task is then mapped to the game design. BLS crowdsources a multiple alignment task of 1 million 16S ribosomal RNA sequences obtained from human microbiome studies. Since its initial release on 7 April 2020, over 4 million players have solved more than 135 million science puzzles, a task unsolvable by a single individual. Leveraging these results, we show that our multiple sequence alignment simultaneously improves microbial phylogeny estimations and UniFrac effect sizes compared to state-of-the-art computational methods. This achievement demonstrates that hyper-gamified scientific tasks attract massive crowds of contributors and offers invaluable resources to the scientific community.

6.
Article in English | MEDLINE | ID: mdl-38575682

ABSTRACT

Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.

7.
Nat Commun ; 15(1): 3009, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589392

ABSTRACT

The composition of the microbial community in the intestine may influence the functions of distant organs such as the brain, lung, and skin. These microbes can promote disease or have beneficial functions, leading to the hypothesis that microbes in the gut explain the co-occurrence of intestinal and skin diseases. Here, we show that the reverse can occur, and that skin directly alters the gut microbiome. Disruption of the dermis by skin wounding or the digestion of dermal hyaluronan results in increased expression in the colon of the host defense genes Reg3 and Muc2, and skin wounding changes the composition and behavior of intestinal bacteria. Enhanced expression Reg3 and Muc2 is induced in vitro by exposure to hyaluronan released by these skin interventions. The change in the colon microbiome after skin wounding is functionally important as these bacteria penetrate the intestinal epithelium and enhance colitis from dextran sodium sulfate (DSS) as seen by the ability to rescue skin associated DSS colitis with oral antibiotics, in germ-free mice, and fecal microbiome transplantation to unwounded mice from mice with skin wounds. These observations provide direct evidence of a skin-gut axis by demonstrating that damage to the skin disrupts homeostasis in intestinal host defense and alters the gut microbiome.


Subject(s)
Colitis , Gastrointestinal Microbiome , Mice , Animals , Hyaluronic Acid/metabolism , Intestinal Mucosa/metabolism , Fecal Microbiota Transplantation , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
8.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562901

ABSTRACT

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

9.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659744

ABSTRACT

The gut microbiome (GMB) has been associated with outcomes of immune checkpoint blockade therapy in melanoma, but there is limited consensus on the specific taxa involved, particularly across different geographic regions. We analyzed pre-treatment stool samples from 674 melanoma patients participating in a phase-III trial of adjuvant nivolumab plus ipilimumab versus nivolumab, across three continents and five regions. Longitudinal analysis revealed that GMB was largely unchanged following treatment, offering promise for lasting GMB-based interventions. In region-specific and cross-region meta-analyses, we identified pre-treatment taxonomic markers associated with recurrence, including Eubacterium, Ruminococcus, Firmicutes, and Clostridium. Recurrence prediction by these markers was best achieved across regions by matching participants on GMB compositional similarity between the intra-regional discovery and external validation sets. AUCs for prediction ranged from 0.83-0.94 (depending on the initial discovery region) for patients closely matched on GMB composition (e.g., JSD ≤0.11). This evidence indicates that taxonomic markers for prediction of recurrence are generalizable across regions, for individuals of similar GMB composition.

10.
Sci Rep ; 14(1): 9785, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684791

ABSTRACT

Several studies have documented the significant impact of methodological choices in microbiome analyses. The myriad of methodological options available complicate the replication of results and generally limit the comparability of findings between independent studies that use differing techniques and measurement pipelines. Here we describe the Mosaic Standards Challenge (MSC), an international interlaboratory study designed to assess the impact of methodological variables on the results. The MSC did not prescribe methods but rather asked participating labs to analyze 7 shared reference samples (5 × human stool samples and 2 × mock communities) using their standard laboratory methods. To capture the array of methodological variables, each participating lab completed a metadata reporting sheet that included 100 different questions regarding the details of their protocol. The goal of this study was to survey the methodological landscape for microbiome metagenomic sequencing (MGS) analyses and the impact of methodological decisions on metagenomic sequencing results. A total of 44 labs participated in the MSC by submitting results (16S or WGS) along with accompanying metadata; thirty 16S rRNA gene amplicon datasets and 14 WGS datasets were collected. The inclusion of two types of reference materials (human stool and mock communities) enabled analysis of both MGS measurement variability between different protocols using the biologically-relevant stool samples, and MGS bias with respect to ground truth values using the DNA mixtures. Owing to the compositional nature of MGS measurements, analyses were conducted on the ratio of Firmicutes: Bacteroidetes allowing us to directly apply common statistical methods. The resulting analysis demonstrated that protocol choices have significant effects, including both bias of the MGS measurement associated with a particular methodological choices, as well as effects on measurement robustness as observed through the spread of results between labs making similar methodological choices. In the analysis of the DNA mock communities, MGS measurement bias was observed even when there was general consensus among the participating laboratories. This study was the result of a collaborative effort that included academic, commercial, and government labs. In addition to highlighting the impact of different methodological decisions on MGS result comparability, this work also provides insights for consideration in future microbiome measurement study design.


Subject(s)
Feces , Metagenomics , Microbiota , RNA, Ribosomal, 16S , Humans , Metagenomics/methods , Metagenomics/standards , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Microbiota/genetics , Bias , Metagenome , Gastrointestinal Microbiome/genetics , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing/methods
11.
Obesity (Silver Spring) ; 32(5): 857-870, 2024 May.
Article in English | MEDLINE | ID: mdl-38426232

ABSTRACT

OBJECTIVE: Big Data are increasingly used in obesity and nutrition research to gain new insights and derive personalized guidance; however, this data in raw form are often not usable. Substantial preprocessing, which requires machine learning (ML), human judgment, and specialized software, is required to transform Big Data into artificial intelligence (AI)- and ML-ready data. These preprocessing steps are the most complex part of the entire modeling pipeline. Understanding the complexity of these steps by the end user is critical for reducing misunderstanding, faulty interpretation, and erroneous downstream conclusions. METHODS: We reviewed three popular obesity/nutrition Big Data sources: microbiome, metabolomics, and accelerometry. The preprocessing pipelines, specialized software, challenges, and how decisions impact final AI- and ML-ready products were detailed. RESULTS: Opportunities for advances to improve quality control, speed of preprocessing, and intelligent end user consumption were presented. CONCLUSIONS: Big Data have the exciting potential for identifying new modifiable factors that impact obesity research. However, to ensure accurate interpretation of conclusions arising from Big Data, the choices involved in preparing AI- and ML-ready data need to be transparent to investigators and clinicians relying on the conclusions.

12.
Circ Res ; 134(7): 842-854, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547246

ABSTRACT

BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/microbiology , Diet , Bacteria , Dietary Fiber
13.
Cell Rep ; 43(4): 113953, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517896

ABSTRACT

The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.


Subject(s)
Gastrointestinal Microbiome , Neurons , Animals , Gastrointestinal Microbiome/physiology , Mice , Neurons/metabolism , Choline O-Acetyltransferase/metabolism , Enteric Nervous System/physiology , Mice, Inbred C57BL , Tyrosine 3-Monooxygenase/metabolism , Male , Gastrointestinal Tract/microbiology
14.
Reprod Fertil ; 5(2)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38513356

ABSTRACT

Abstract: Although numerous studies have demonstrated the impact of microbiome manipulation on human health, research on the microbiome's influence on female health remains relatively limited despite substantial disease burden. In light of this, we present a selected review of clinical trials and preclinical studies targeting both the vaginal and gut microbiomes for the prevention or treatment of various gynecologic conditions. Specifically, we explore studies that leverage microbiota transplants, probiotics, prebiotics, diet modifications, and engineered microbial strains. A healthy vaginal microbiome for females of reproductive age consists of lactic acid-producing bacteria predominantly of the Lactobacillus genus, which serves as a protective barrier against pathogens and maintains a balanced ecosystem. The gut microbiota's production of short-chain fatty acids, metabolism of primary bile acids, and modulation of sex steroid levels have significant implications for the interplay between host and microbes throughout the body, ultimately impacting reproductive health. By harnessing interventions that modulate both the vaginal and gut microbiomes, it becomes possible to not only maintain homeostasis but also mitigate pathological conditions. While the field is still working toward making broad clinical recommendations, the current studies demonstrate that manipulating the microbiome holds great potential for addressing diverse gynecologic conditions. Lay summary: Manipulating the microbiome has recently entered popular culture, with various diets thought to aid the microbes that live within us. These microbes live in different locations of our body and accordingly help us digest food, modulate our immune system, and influence reproductive health. The role of the microbes living in and influencing the female reproductive tract remains understudied despite known roles in common conditions such as vulvovaginal candidiasis (affecting 75% of females in their lifetime), bacterial vaginosis (25% of females in their lifetime), cervical HPV infection (80% of females in their lifetime), endometriosis (6-10% of females of reproductive age), and polycystic ovary syndrome (10-12% of females of reproductive age). Here, we review four different approaches used to manipulate the female reproductive tract and gastrointestinal system microbiomes: microbiota transplants, probiotics, prebiotics, and dietary interventions, and the use of engineered microbial strains. In doing so, we aim to stimulate discussion on new ways to understand and treat female reproductive health conditions.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Female , Humans , Animals , Probiotics/therapeutic use , Prebiotics , Reproduction
15.
Sci Rep ; 14(1): 6095, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480804

ABSTRACT

In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Microbiota , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Genomics , Formates
16.
Nat Aging ; 4(4): 584-594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528230

ABSTRACT

Multiomics has shown promise in noninvasive risk profiling and early detection of various common diseases. In the present study, in a prospective population-based cohort with ~18 years of e-health record follow-up, we investigated the incremental and combined value of genomic and gut metagenomic risk assessment compared with conventional risk factors for predicting incident coronary artery disease (CAD), type 2 diabetes (T2D), Alzheimer disease and prostate cancer. We found that polygenic risk scores (PRSs) improved prediction over conventional risk factors for all diseases. Gut microbiome scores improved predictive capacity over baseline age for CAD, T2D and prostate cancer. Integrated risk models of PRSs, gut microbiome scores and conventional risk factors achieved the highest predictive performance for all diseases studied compared with models based on conventional risk factors alone. The present study demonstrates that integrated PRSs and gut metagenomic risk models improve the predictive value over conventional risk factors for common chronic diseases.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Prostatic Neoplasms , Male , Humans , Diabetes Mellitus, Type 2/diagnosis , Prospective Studies , Risk Factors , Coronary Artery Disease/genetics , Genetic Risk Score
17.
Oncogene ; 43(15): 1127-1148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396294

ABSTRACT

In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers independently verified or extended our findings [2-12]. Given this impact, we carefully considered concerns by Gihawi et al. [13] that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR [14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes. These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures exist in TCGA, and show they are robust to methodology.


Subject(s)
Microbiota , Neoplasms , Humans , Neoplasms/genetics , Microbiota/genetics
19.
Nat Microbiol ; 9(3): 595-613, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347104

ABSTRACT

Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.


Subject(s)
Microbial Consortia , Soil Microbiology , Mice , Humans , Animals , Swine , Cattle , Cadaver , Metagenome , Bacteria
20.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38305096

ABSTRACT

AIMS: Gastrointestinal disease is a leading cause of morbidity in bottlenose dolphins (Tursiops truncatus) under managed care. Fecal microbiota transplantation (FMT) holds promise as a therapeutic tool to restore gut microbiota without antibiotic use. This prospective clinical study aimed to develop a screening protocol for FMT donors to ensure safety, determine an effective FMT administration protocol for managed dolphins, and evaluate the efficacy of FMTs in four recipient dolphins. METHODS AND RESULTS: Comprehensive health monitoring was performed on donor and recipient dolphins. Fecal samples were collected before, during, and after FMT therapy. Screening of donor and recipient fecal samples was accomplished by in-house and reference lab diagnostic tests. Shotgun metagenomics was used for sequencing. Following FMT treatment, all four recipient communities experienced engraftment of novel microbial species from donor communities. Engraftment coincided with resolution of clinical signs and a sustained increase in alpha diversity. CONCLUSION: The donor screening protocol proved to be safe in this study and no adverse effects were observed in four recipient dolphins. Treatment coincided with improvement in clinical signs.


Subject(s)
Bottle-Nosed Dolphin , Gastrointestinal Microbiome , Animals , Fecal Microbiota Transplantation/methods , Prospective Studies , Feces , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...