ABSTRACT
OBJECTIVES: To assess whether weaning to an extensively hydrolyzed formula (EHF) decreases gut permeability and/or markers of intestinal inflammation in infants with HLA-conferred diabetes susceptibility, when compared with conventional formula. STUDY DESIGN: By analyzing 1468 expecting biological parent pairs for HLA-conferred susceptibility for type 1 diabetes, 465 couples (32 %) potentially eligible for the study were identified. After further parental consent, 332 babies to be born were randomized at 35th gestational week. HLA genotyping was performed at birth in 309 infants. Out of 87 eligible children, 73 infants participated in the intervention study: 33 in the EHF group and 40 in the control group. Clinical visits took place at 3, 6, 9, and 12 months of age. The infants were provided either EHF or conventional formula whenever breastfeeding was not available or additional feeding was required over the first 9 months of life. The main outcome was the lactulose to mannitol ratio (L/M ratio) at 9 months. The secondary outcomes were L/M ratio at 3, 6, and 12 months of age, and fecal calprotectin and human beta-defensin 2 (HBD-2) levels at each visit. RESULTS: Compared with controls, the median L/M ratio was lower in the EHF group at 9 months (.006 vs .028; P = .005). Otherwise, the levels of intestinal permeability, fecal calprotectin, and HBD-2 were comparable between the two groups, although slight differences in the age-related dynamics of these markers were observed. CONCLUSIONS: It is possible to decrease intestinal permeability in infancy through weaning to an extensively hydrolyzed formula. This may reduce the early exposure to dietary antigens. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01735123.
Subject(s)
Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Feeding Behavior , Genetic Predisposition to Disease/genetics , Infant Formula , Intestinal Absorption/physiology , Biomarkers/metabolism , Caseins , Diabetes Mellitus, Type 1/diagnosis , Female , Humans , Infant , Infant, Newborn , Inflammation/etiology , Inflammation/metabolism , Lactulose/metabolism , Leukocyte L1 Antigen Complex/metabolism , Male , Mannitol/metabolism , beta-Defensins/metabolismABSTRACT
Conserved protein antigens have been investigated as vaccine candidates against respiratory pathogens. We evaluated the natural development of antibodies against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis proteins during childhood. Serum samples were collected from 50 healthy children from their first months to age 13 years (median sampling interval, 6 months). We also analyzed serum samples from 24 adults. Serum IgG antibodies against eight pneumococcal proteins (Ply, CbpA, PspA 1 and 2, PcpA, PhtD, StkP-C, and PcsB-N), three H. influenzae proteins, and five M. catarrhalis proteins were measured using a multiplexed bead-based immunoassay. Antibody levels were analyzed using multilevel mixed-effects regression and Spearman's correlation. Antibody levels against pneumococcal proteins peaked at 3 to 5 years of age and then reached a plateau. Antibody levels against H. influenzae proteins peaked during the second year and then stabilized. Antibody levels against M. catarrhalis proteins peaked during the first year and then slowly decreased. Peak antibody levels during childhood were higher than those of adults. Correlations among pneumococcal antibody levels were highest among anti-CbpA, anti-PcpA, and anti-PhtD antibodies (r = 0.71 to 0.75; P < 0.001). The children presented 854 symptomatic respiratory infections on 586 occasions. Symptomatic respiratory infections did not improve prediction of antibody levels in the regression model. The maturation of immune responses against the investigated pneumococcal proteins shares similarities, especially among CbpA, PcpA, and PhtD. Antibody production against H. influenzae and M. catarrhalis proteins starts early in life and reaches peak levels earlier than antibody production against the pneumococcal proteins. Basal antibody levels are not related to the occurrence of symptomatic respiratory infections.