Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 16(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37401381

ABSTRACT

Transgene driven expression of Escherichia coli nitroreductase (NTR1.0) renders animal cells susceptible to the antibiotic metronidazole (MTZ). Many NTR1.0/MTZ ablation tools have been reported in zebrafish, which have significantly impacted regeneration studies. However, NTR1.0-based tools are not appropriate for modeling chronic cell loss as prolonged application of the required MTZ dose (10 mM) is deleterious to zebrafish health. We established that this dose corresponds to the median lethal dose (LD50) of MTZ in larval and adult zebrafish and that it induced intestinal pathology. NTR2.0 is a more active nitroreductase engineered from Vibrio vulnificus NfsB that requires substantially less MTZ to induce cell ablation. Here, we report on the generation of two new NTR2.0-based zebrafish lines in which acute ß-cell ablation can be achieved without MTZ-associated intestinal pathology. For the first time, we were able to sustain ß-cell loss and maintain elevated glucose levels (chronic hyperglycemia) in larvae and adults. Adult fish showed significant weight loss, consistent with the induction of a diabetic state, indicating that this paradigm will allow the modeling of diabetes and associated pathologies.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Animals , Zebrafish/metabolism , Hyperglycemia/complications , Metronidazole/pharmacology , Metronidazole/therapeutic use , Nitroreductases/metabolism , Animals, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...