Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Dairy Sci ; 102(11): 9943-9955, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31447162

ABSTRACT

The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the transition period (d -28 ± 3 to 23 ± 3 relative to calving) on rumen fermentation and mRNA abundance of genes in the rumen epithelium of fresh cows (d 1 to 23 ± 3 after calving) fed diets differing in starch content. Eighteen ruminally cannulated multiparous Holstein cows were fed diets with SCFP (n = 9) or without (CON; n = 9) throughout the experiment. All cows were fed a common basal controlled-energy close-up diet (1.43 Mcal/kg, net energy for lactation; 13.8% starch) before calving. Cows within each treatment (CON or SCFP) were fed either a low-starch (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet during the fresh period. Cows were assigned to treatment after balancing for parity, body condition score, and expected calving date. Rumen pH was measured continuously for 72 h starting on d -10, -3, 1, 7, and 21 relative to calving date. Rumen papillae were collected on d -10 and 21 relative to calving. Supplementation of SCFP had no effect on rumen pH during d -10 to -8, but mean rumen pH tended to be higher (6.64 vs. 6.49) for SCFP cows than for CON cows during d -3 to -1. Feeding SCFP decreased the range of rumen pH variation compared with CON within the HS group during both d 7 to 9 (1.08 vs. 1.38) and d 21 to 23 (1.03 vs. 1.30) after calving. In addition, nadir rumen pH tended to be higher (5.64 vs. 5.44) and duration of pH below 5.8 tended to be shorter (116 vs. 323 min/d) for the SCFP group than for the CON group during d 21 to 23 after calving. Supplementation of SCFP increased the mRNA abundance of insulin-like growth factor-6 (1.10 vs. 0.69) before calving and decreased the mRNA abundance of putative anion transporter isoform 1 (1.12 vs. 2.27) after calving. Nadir rumen pH tended to be higher during d 1 to 3 (5.63 vs. 5.41) for LS cows than for HS cows, but rumen pH was not affected by dietary starch content during other time periods. Dietary starch content had no effect on mRNA abundance of genes in the rumen epithelium after calving. These results suggest that supplementation of SCFP may reduce the range of variation in rumen pH in fresh cows fed HS diets and the duration of subacute ruminal acidosis by the end of the fresh period regardless of dietary starch content and that decreasing dietary starch content during the fresh period may reduce the decrease in rumen pH immediately after parturition.


Subject(s)
Diet/veterinary , Dietary Supplements , Rumination, Digestive , Saccharomyces cerevisiae/metabolism , Starch/pharmacology , Animals , Cattle , Female , Fermentation , Lactation , Milk , Parity , Pregnancy , Rumen/metabolism
3.
J Dairy Sci ; 102(7): 6199-6209, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030931

ABSTRACT

The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d -28 ± 3 to 44 ± 3 relative to calving) on mRNA abundance of genes in the rumen epithelium, inflammation indicators, oxidative status, and adaptive immunity of dairy cows fed diets with different starch content after calving. From d 28 ± 3 (± standard deviation) before the expected calving date to calving, Holstein cows (n = 38) received a common basal controlled-energy close-up diet (1.43 Mcal/kg, net energy for lactation; 13.8% starch) with (SCFP; n = 19) or without (CON; n = 19) SCFP, and cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period). There were 4 treatment groups: LS + CON (n = 9), LS + SCFP (n = 10), HS + CON (n = 10), and HS + SCFP (n = 9). From d 24 ± 3 to 44 ± 3 after calving, all cows were fed the HS diets (post-fresh period). Animal assignment to treatments was balanced for parity, body condition score, and expected calving date. An interaction was observed between dietary starch content and SCFP on indices of oxidative stress; plasma concentrations of total antioxidant capacity tended to be reduced on d 21 after calving for SCFP compared with CON cows when a LS fresh diet was fed, but did not differ for cows fed HS fresh diets. Regardless of starch content, SCFP supplementation increased plasma concentrations of malondialdehyde at d 21 after calving compared with CON. Supplementing with SCFP reduced serum concentrations of haptoglobin on d 7 after calving, indicating reduced inflammation, and feeding LS fresh diets reduced mRNA abundance of IL receptor associated kinase-1 in rumen tissue at d 21 after calving, suggesting reduced immune activation in rumen tissue. Other than the anti-inflammatory effects indicated by lower serum haptoglobin concentration, no other effects of treatment on adaptive immunity were detectable. These results indicate that supplementing SCFP through the transition period and feeding low-starch diets during the fresh period may reduce inflammation.


Subject(s)
Cattle/immunology , Diet/veterinary , Fermentation , Saccharomyces cerevisiae/metabolism , Starch/administration & dosage , Animals , Antioxidants/analysis , Cattle Diseases/prevention & control , Dietary Supplements , Female , Haptoglobins/analysis , Inflammation/prevention & control , Inflammation/veterinary , Lactation/physiology , Parity , Parturition/physiology , Pregnancy , Rumen/immunology
4.
J Dairy Sci ; 102(4): 3082-3096, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30738670

ABSTRACT

The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d -28 ± 3 to 44 ± 3 relative to calving) on dry matter intake (DMI), milk production, apparent total-tract nutrient digestibility, and postpartum ovarian activity of dairy cows fed fresh diets varying in starch content. From d 28 ± 3 before the expected calving date until d 44 ± 3 after calving, 117 Holstein cows were fed diets with SCFP (SCFP; n = 59) or without (control, CON; n = 58). A common, basal, controlled-energy close-up diet (net energy for lactation: 1.43 Mcal/kg; 13.8% starch) was fed before calving. Cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period), resulting in 4 treatment groups: LS-CON (n = 30), LS-SCFP (n = 29), HS-CON (n = 28), and HS-SCFP (n = 30). All cows were fed the HS diets from d 24 ± 3 to 44 ± 3 after calving (post-fresh period). Cows were assigned to treatment balanced for parity, body condition score, body weight, and expected calving date. Milk yield was higher for cows fed the LS diets compared with those fed the HS diets during the fresh period (34.1 vs. 32.1 kg/d), whereas DMI and 3.5% fat-corrected milk yield (FCM) were not affected by dietary starch content, and LS cows tended to lose more body condition than HS cows (-0.42 vs. -0.35 per 21 d) during the fresh period. Overall DMI during the close-up and fresh periods did not differ between SCFP and CON cows. However, SCFP supplementation transiently increased DMI on d 1 (13.0 vs. 11.9 kg/d) and 5 (15.5 vs. 14.1 kg/d) after calving compared with CON. During the post-fresh period, SCFP cows tended to eat less than CON cows (19.8 vs. 20.6 kg/d) but had similar 3.5% FCM (44.9 vs. 43.6 kg/d), resulting in greater feed efficiency for SCFP cows (FCM/DMI; 2.27 vs. 2.13). Neither starch content of fresh diets nor SCFP supplementation affected the interval from calving to first ovulation or the incidence of double ovulation. These findings suggest that feeding low-starch diets during the fresh period can increase milk production of dairy cows during the fresh period, and that supplementation of SCFP may increase feed intake around calving and feed efficiency in the post-fresh period.


Subject(s)
Cattle/physiology , Fermented Foods/analysis , Saccharomyces cerevisiae/metabolism , Starch/metabolism , Animal Feed/analysis , Animals , Body Weight , Cattle/growth & development , Diet/veterinary , Dietary Supplements/analysis , Female , Fermentation , Lactation , Male , Milk/metabolism , Parturition , Postpartum Period/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...