Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35464256

ABSTRACT

Transportation infrastructure, such as road or railroad networks, represent a fundamental component of our civilization. For sustainable planning and informed decision making, a thorough understanding of the long-term evolution of transportation infrastructure such as road networks is crucial. However, spatially explicit, multi-temporal road network data covering large spatial extents are scarce and rarely available prior to the 2000s. Herein, we propose a framework that employs increasingly available scanned and georeferenced historical map series to reconstruct past road networks, by integrating abundant, contemporary road network data and color information extracted from historical maps. Specifically, our method uses contemporary road segments as analytical units and extracts historical roads by inferring their existence in historical map series based on image processing and clustering techniques. We tested our method on over 300,000 road segments representing more than 50,000 km of the road network in the United States, extending across three study areas that cover 42 historical topographic map sheets dated between 1890 and 1950. We evaluated our approach by comparison to other historical datasets and against manually created reference data, achieving F-1 scores of up to 0.95, and showed that the extracted road network statistics are highly plausible over time, i.e., following general growth patterns. We demonstrated that contemporary geospatial data integrated with information extracted from historical map series open up new avenues for the quantitative analysis of long-term urbanization processes and landscape changes far beyond the era of operational remote sensing and digital cartography.

2.
Remote Sens (Basel) ; 13(18)2021 Sep.
Article in English | MEDLINE | ID: mdl-34938577

ABSTRACT

Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature-human systems (e.g., the dynamics of the wildland-urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multitemporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values > 0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available.

3.
ISPRS Int J Geoinf ; 7(4)2018 Apr.
Article in English | MEDLINE | ID: mdl-31061817

ABSTRACT

Historical maps are unique sources of retrospective geographical information. Recently, several map archives containing map series covering large spatial and temporal extents have been systematically scanned and made available to the public. The geographical information contained in such data archives makes it possible to extend geospatial analysis retrospectively beyond the era of digital cartography. However, given the large data volumes of such archives (e.g., more than 200,000 map sheets in the United States Geological Survey topographic map archive) and the low graphical quality of older, manually-produced map sheets, the process to extract geographical information from these map archives needs to be automated to the highest degree possible. To understand the potential challenges (e.g., salient map characteristics and data quality variations) in automating large-scale information extraction tasks for map archives, it is useful to efficiently assess spatio-temporal coverage, approximate map content, and spatial accuracy of georeferenced map sheets at different map scales. Such preliminary analytical steps are often neglected or ignored in the map processing literature but represent critical phases that lay the foundation for any subsequent computational processes including recognition. Exemplified for the United States Geological Survey topographic map and the Sanborn fire insurance map archives, we demonstrate how such preliminary analyses can be systematically conducted using traditional analytical and cartographic techniques, as well as visual-analytical data mining tools originating from machine learning and data science.

4.
Int J Health Geogr ; 7: 60, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-19032791

ABSTRACT

BACKGROUND: The process of geocoding produces output coordinates of varying degrees of quality. Previous studies have revealed that simply excluding records with low-quality geocodes from analysis can introduce significant bias, but depending on the number and severity of the inaccuracies, their inclusion may also lead to bias. Little quantitative research has been presented on the cost and/or effectiveness of correcting geocodes through manual interactive processes, so the most cost effective methods for improving geocoded data are unclear. The present work investigates the time and effort required to correct geocodes contained in five health-related datasets that represent examples of data commonly used in Health GIS. RESULTS: Geocode correction was attempted on five health-related datasets containing a total of 22,317 records. The complete processing of these data took 11.4 weeks (427 hours), averaging 69 seconds of processing time per record. Overall, the geocodes associated with 12,280 (55%) of records were successfully improved, taking 95 seconds of processing time per corrected record on average across all five datasets. Geocode correction improved the overall match rate (the number of successful matches out of the total attempted) from 79.3 to 95%. The spatial shift between the location of original successfully matched geocodes and their corrected improved counterparts averaged 9.9 km per corrected record. After geocode correction the number of city and USPS ZIP code accuracy geocodes were reduced from 10,959 and 1,031 to 6,284 and 200, respectively, while the number of building centroid accuracy geocodes increased from 0 to 2,261. CONCLUSION: The results indicate that manual geocode correction using a web-based interactive approach is a feasible and cost effective method for improving the quality of geocoded data. The level of effort required varies depending on the type of data geocoded. These results can be used to choose between data improvement options (e.g., manual intervention, pseudocoding/geo-imputation, field GPS readings).


Subject(s)
Data Interpretation, Statistical , Databases, Factual/standards , Geographic Information Systems/standards , Databases, Factual/statistics & numerical data , Geographic Information Systems/statistics & numerical data , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...