Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(22): 33030-33046, 2024 May.
Article in English | MEDLINE | ID: mdl-38671265

ABSTRACT

Accurate pollution source identification is essential for establishing adequate water management strategies, particularly in groundwater with slow flow and prolonged recharge process allowing long-term pollution retention. An integrated study based on hydrogeochemical, dual isotopic (δ15NNO3 and δ18ONO3), and microbiological approaches (DN, IRB, and SRB BART tests) along with the statistical data processing was conducted to determine nitrate origin and fate in oxic alluvial groundwater source Kljuc in Serbia. The findings from a comprehensive investigation, encompassing 20 groundwater sampling locations during the period 2010-2019, delineated three distinct zones - the hinterland (anthropogenic impact area-untreated sewage inflow), the middle zone (area of mixed influence from fertilizer application, accompanied by a mitigated anthropogenic impact), and the zone of riparian denitrification. Significant linear relationship between anthropogenic impact parameters (Na, Cl, B, NO3-, NH4+, and electrical conductivity) along with the isotopic signatures (δ15N-NO3- ranking from + 10.01 to + 11.18‰ and δ18O-NO3- ranking from + 1.15 to + 6.24‰) and grouped sampling objects by cluster analysis indicated that hinterland is burdened by the nitrates originating from anthropogenic impact. The cross-section of groundwater flow data, concurrent increase of NH4+, and pH levels, along with the highest values of δ15N-NO3- (+ 12.90‰) and δ18O-NO3- (+ 9.70‰), indicated area of fertilizers (urea) impact. BART test results, pH increase, and low oxygen concentration, along with the groundwater flow data in riparian zone, indicated the unfolding of denitrification process. Presented research emphasizes the importance, necessities, and advantages of simultaneous and complementary use of hydrogeochemical, microbiological, and isotopic data.


Subject(s)
Environmental Monitoring , Groundwater , Nitrates , Water Pollutants, Chemical , Nitrates/analysis , Groundwater/chemistry , Serbia , Water Pollutants, Chemical/analysis
2.
Environ Geochem Health ; 46(3): 100, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407701

ABSTRACT

High concentrations of NO3̄ in water resources are detrimental to both human health and aquatic ecosystems. Identification of NO3̄ sources and biogeochemical processes is a crucial step in managing and controlling NO3̄ pollution. In this study, land use, hydrochemical data, dual stable isotopic ratios and Bayesian Stable Isotope Mixing Models (BSIMM) were integrated to identify NO3̄ sources and estimate their proportional contributions to the contamination of the Karaj Urban Aquifer (Iran). Elevated NO3̄ concentrations indicated a severe NO3̄ pollution, with 39 and 52% of groundwater (GW) samples displaying the concentrations of NO3̄ in exceedance of the World Health Organization (WHO) standard of 50 mg NO3̄ L-1 in the rainy and dry seasons, respectively. Dual stable isotopes inferred that urban sewage is the main NO3̄ source in the Karaj Plain. The diagram of NO3̄/Cl‾ versus Cl‾ confirmed that municipal sewage is the major source of NO3̄. Results also showed that biogeochemical nitrogen dynamics are mainly influenced by nitrification, while denitrification is minimal. The BSIMM model suggested that NO3̄ originated predominantly from urban sewage (78.2%), followed by soil organic nitrogen (12.2%), and chemical fertilizer (9.5%) in the dry season. In the wet season, the relative contributions of urban sewage, soil nitrogen and chemical fertilizer were 87.5, 6.7, and 5.5%, respectively. The sensitivity analysis for the BSIMM modeling indicates that the isotopic signatures of sewage had the major impact on the overall GW NO3̄ source apportionment. The findings provide important insights for local authorities to support effective and sustainable GW resources management in the Karaj Urban Aquifer. It also demonstrates that employing Bayesian models combined with multi-parameters can improve the accuracy of NO3̄ source identification.


Subject(s)
Groundwater , Nitrates , Humans , Iran , Bayes Theorem , Ecosystem , Fertilizers , Sewage , Nitrogen , Soil
3.
Environ Monit Assess ; 195(5): 601, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37081198

ABSTRACT

In many cases, shallow coastal lagoons are, on the one hand, vulnerable habitats for birds and marine ecosystems and, on the other hand, threatened by discharging nutrient-laden surface waters and groundwater. In particular, the localization and quantification of submarine groundwater discharge (SGD) is of key concern in this regard. The presented study aimed at investigating SGD into a vulnerable coastal lagoon that is strongly impacted by evaporation applying a multi-tracer approach. The joint application of radionuclides (222Rn, 223Ra, 224Ra), stable water isotopes (δ18O, δ2H) and the water salinity as environmental water tracers allowed evaluating the suitability of the individual parameters in this specific type of environment. Whilst stable isotope and salinity data were difficult to construe in terms of SGD occurrence due to the intense impact of evaporation, a radon mass balance allowed localising SGD areas within the lagoon and quantifying the related SGD flux rates. In addition, a 224Ra/223Ra ratio analysis revealed information on the apparent age of the discharged groundwater, and hence on the flushing intensity of the lagoon. Besides these site-specific results, the study allowed the following general conclusions regarding the suitability of the applied tracers: (i) we verified the suitability of a radon mass balance approach for proving/disproving SGD occurrence and quantifying SGD fluxes in shallow coastal lagoons strongly impacted by evaporation; (ii) we showed that the impact of evaporation may impede the use of water stable isotope and salinity data as SGD indicators in such specific environments; (iii) we demonstrated that the tidal impact on a lagoon water body during a sampling campaign can be compensated by adapting sampling schedule and cruise track to the tidal cycle.


Subject(s)
Groundwater , Radon , Ecosystem , Environmental Monitoring/methods , Radioisotopes/analysis , Radon/analysis , Water , Seawater
4.
Sci Total Environ ; 823: 153749, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35150690

ABSTRACT

The Kabul urban aquifer (Afghanistan), which is the main source of drinking water for Kabul city's inhabitants, is highly vulnerable to anthropogenic pollution. In this study, the geochemistry of major ions (including reactive nitrogen species such as NO3-, NO2-, and NH4+) and stable isotope ratios (δ15N-NO3-, δ18O-NO3-, δ18O-H2O, and δ2H-H2O) of surface and groundwater samples from the Kabul Plain were analyzed over two sampling periods (dry and wet seasons). A Bayesian stable isotope mixing model (BSIMM) was also employed to trace potential nitrate sources, transformation processes, and proportional contributions of nitrate sources in the Kabul aquifer. The plotting of δ15N-NO3- against δ18O-NO3̄ (δ15N-NO3- and δ18O-NO3- values ranged from +4.8 to +25.4‰ and from -11.7 to +18.6‰, respectively) suggests that NO3- primarily originated from the nitrification of sewage rather than artificial fertilizer. The plotting of δ15N-NO3- versus NO3-/Cl- ratios also supported the assumption that sewage is the dominant nitrate source. The results indicate that denitrification did not influence the NO3- isotopic composition in the Kabul aquifer. The BSIMM model suggests that nitrate in the dry season originated mainly from sewage (~81%), followed by soil organic N (10.5%), and chemical fertilizer (8.5%). In the wet season, sewage (~87.5%), soil organic N (6.7%), and chemical fertilizer (5.8%) were the main sources of NO3- in the Kabul aquifer. Effective land management measures should be taken to improve the sewage collection system in the Kabul Plain.


Subject(s)
Groundwater , Water Pollutants, Chemical , Afghanistan , Bayes Theorem , China , Environmental Monitoring/methods , Nitrates/analysis , Nitrogen Isotopes/analysis , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 746: 141203, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32795761

ABSTRACT

This study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.

6.
PLoS One ; 14(7): e0219479, 2019.
Article in English | MEDLINE | ID: mdl-31335897

ABSTRACT

From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation-area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation-area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.


Subject(s)
Dairying , Nitrogen/analysis , Waste Management , Agriculture , Ammonium Compounds/analysis , Geography , Nitrous Oxide/analysis , Oxygen Isotopes/analysis , Oxygen Radioisotopes/analysis , Soil , Time Factors , Water/chemistry
7.
Isotopes Environ Health Stud ; 52(6): 649-72, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26982695

ABSTRACT

Po is the main Italian river and the δ(18)O and δ(2)H of its water reveal a similarity between the current meteoric fingerprint and that of the past represented by groundwater. As concerns the hydrochemisty, the Ca-HCO3 facies remained constant over the last 50 year, and only nitrate significantly increased from less than 1 mg/L to more than 10 mg/L in the 1980s, and then attenuated to a value of 9 mg/L. Coherently, δ(13)CDIC and δ(34)SSO4 are compatible with the weathering of the lithologies outcropping in the basin, while extremely variable δ(15)NNO3 indicates contribution from pollutants released by urban, agricultural and zootechnical activities. This suggests that although the origin of the main constituents of the Po river water is geogenic, anthropogenic contributions are locally significant. Noteworthy, the associated aquifers have the same nitrogen isotopic signature of the Po river, but are characterized by significantly higher NO(-) 3 concentration. This implies that aquifers' pollution is not ascribed to inflow of current river water, and that the attenuation of the nitrogen load recorded in the river is not occurring in the aquifers, due to their longer water residence time and delayed recovery from anthropogenic contamination.


Subject(s)
Fresh Water/chemistry , Isotopes/analysis , Italy
8.
Water Res ; 74: 203-12, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25744184

ABSTRACT

Constructed wetlands are important ecosystems with respect to nitrogen cycling. Here we studied the activity and abundance of nitrogen transforming bacteria as well as the spatial distribution of nitrification, anaerobic ammonium oxidation (anammox), and denitrification processes in a horizontal subsurface-flow constructed wetland. The functional genes of the nitrogen cycle were evenly distributed in a linear way along the flow path with prevalence at the superficial points. The same trend was observed for the nitrification and denitrification turnover rates using isotope labeling techniques. It was also shown that only short-term incubations should be used to measure denitrification turnover rates. Significant nitrate consumption under aerobic conditions diminishes nitrification rates and should therefore be taken into account when estimating nitrification turnover rates. This nitrate consumption was due to aerobic denitrification, the rate of which was comparable to that for anaerobic denitrification. Consequently, denitrification should not be considered as an exclusively anaerobic process. Phylogenetic analysis of hydrazine synthase (hzsA) gene clones indicated the presence of Brocadia and Kuenenia anammox species in the constructed wetland. Although anammox bacteria were detected by molecular methods, anammox activity could not be measured and hence this process appears to be of low importance in nitrogen transformations in these freshwater ecosystems.


Subject(s)
Ammonia/metabolism , Bacteria/metabolism , Denitrification , Groundwater/chemistry , Nitrogen/metabolism , Wetlands , Aerobiosis , Anaerobiosis , Bacteria/genetics , Genes, Bacterial , Phylogeny , Sequence Analysis, DNA , Waste Disposal, Fluid/methods , Water Pollution, Chemical , Water Purification/methods
9.
Environ Monit Assess ; 187(3): 105, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25666648

ABSTRACT

Freshwater discharge into the coastal sea is of general interest for two reasons: (i) It acts as vehicle for the transport of contaminants or nutrients into the ocean, and (ii) it indicates the loss of significant volumes of freshwater that might be needed for irrigation or drinking water supply. Due to the large-scale and long-term nature of the related hydrological processes, locating and quantitatively assessing freshwater discharge into the sea require naturally occurring tracers that allow fast, inexpensive and straightforward detection. In several studies, the standard water parameters electrical conductivity (EC) and pH have proven their suitability in this regard. However, while distribution patterns of EC and pH in the coastal sea indicate freshwater discharge in general, a separation between discharging surface water and submarine groundwater discharge (SGD) is not possible with these alone. The naturally occurring radionuclide radon-222 has been shown to be useful in the quantification of SGD and its distinction from surface runoff. This study aimed to evaluate and compare the informative value of the three parameters-EC, pH and radon concentration-in detecting and quantifying SGD by carrying out a case study in a bay located in western Ireland. The results reveal that radon activity is the most sensitive parameter for detecting SGD. However, only the combined evaluation of radon, EC and pH allows a quantitative allocation of groundwater and surface water contributions to the overall freshwater discharge into the sea. This conclusion is independently supported by stable isotope data measured on selected samples.


Subject(s)
Bays/chemistry , Environmental Monitoring/methods , Fresh Water/analysis , Electric Conductivity , Groundwater , Ireland , Oceans and Seas , Radioisotopes/analysis , Radon/analysis , Seawater/chemistry , Ships , Water , Water Movements , Water Supply
10.
Environ Sci Pollut Res Int ; 22(17): 12829-39, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25233917

ABSTRACT

Pathways of ammonium (NH4 (+)) removal were investigated using the stable isotope approach in constructed wetlands (CWs). We investigated and compared several types of CWs: planted horizontal subsurface flow (HSSF), unplanted HSSF, and floating plant root mat (FPRM), including spatial and seasonal variations. Plant presence was the key factor influencing efficiency of NH4 (+) removal in all CWs, what was illustrated by lower NH4 (+)-N removal by the unplanted HSSF CW in comparison with planted CWs. No statistically significant differences in NH4 (+) removal efficiencies between seasons were detected. Even though plant uptake accounted for 32-100 % of NH4 (+) removal during spring and summer in planted CWs, throughout the year, most of NH4 (+) was removed via simultaneous nitrification-denitrification, what was clearly shown by linear increase of δ(15)N-NH4 (+) with decrease of loads along the flow path and absence of nitrate (NO3 (-)) accumulation. Average yearly enrichment factor for nitrification was -7.9 ‰ for planted HSSF CW and -5.8 ‰ for FPRM. Lack of enrichment for δ(15)N-NO3 (-) implied that other processes, such as nitrification and mineralization were superimposed on denitrification and makes the stable isotope approach unsuitable for the estimation of denitrification in the systems obtaining NH4 (+) rich inflow water.


Subject(s)
Ammonium Compounds/metabolism , Groundwater/analysis , Nitrates/metabolism , Water Pollutants, Chemical/metabolism , Wetlands , Ammonium Compounds/isolation & purification , Biodegradation, Environmental , Denitrification , Groundwater/microbiology , Nitrates/isolation & purification , Nitrification , Plant Roots/metabolism , Poaceae/metabolism , Seasons , Water Pollutants, Chemical/analysis , Water Purification
11.
Environ Sci Pollut Res Int ; 22(7): 5184-203, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25348364

ABSTRACT

Although the Po river is the most important fluvial system of Northern Italy, the systematic geochemical and isotopic investigations of its water are rare and were never reported for the whole basin. The present contribution aims to fill this knowledge gap, reporting a comprehensive data set including oxygen and hydrogen stable isotopes as well as major and trace element concentration of dissolved species for 54 Po river water samples, mainly collected in different hydrological conditions (peak discharge in April, drought in August) at increasing distance from the source, i.e., from the upper part of the catchment to the terminal (deltaic) part of the river at the confluence with the Adriatic Sea. The isotopic compositions demonstrate that the predominant part of the runoff derives from the Alpine sector of the catchment through important tributaries such as the Dora Baltea, Ticino, Adda, and Tanaro rivers, whereas the contribution from the Apennines tributaries is less important. The geochemical and isotopic compositions show that the Po river water attains a homogeneous composition at ca. 100 km from the source. The average composition is characterized by δ(18)O -9.8‰, δD -66.2‰, total dissolved solid (TDS) 268 mg/L, and chloride 17 mg/L and by a general Ca-HCO3 hydrochemical facies, which is maintained for most of the river stream, only varying in the terminal part where the river is diverted in a complex deltaic system affected by more significant evaporation and mixing with saline water evidenced by higher TDS and chloride content (up to 8198 and 4197 mg/L, respectively). Geochemical and isotopic maps have been drawn to visualize spatial gradients, which reflect the evolution of the river water composition at progressive distance from the source; more detailed maps were focused on the deltaic part in order to visualize the processes occurring in the transitional zone toward the Adriatic Sea. The data also highlight anthropogenic contributions, mainly represented by significant concentrations of nitrate (average 8 mg/L) and possibly arsenic (average 12 µg/L). These data allow the calculation of geochemical fluxes transferred from the river to the sea, and generally, they contribute to the definition of a "hydro-archive" which is useful to highlight ongoing variations in the related ecosystems.


Subject(s)
Oxygen/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen , Hydrology , Italy , Nitrates , Oxygen Isotopes , Trace Elements
12.
Extremophiles ; 17(6): 1003-12, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24030483

ABSTRACT

Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.


Subject(s)
Desulfovibrio/metabolism , Lakes/microbiology , Sulfur/metabolism , Desulfovibrio/isolation & purification
13.
Isotopes Environ Health Stud ; 44(1): 99-110, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18320431

ABSTRACT

A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.


Subject(s)
Deuterium/analysis , Environmental Monitoring/methods , Fresh Water/chemistry , Mining , Models, Biological , Oxygen Isotopes/analysis , Water Supply/analysis , Atmosphere , Deuterium/chemistry , Environmental Health , Germany , Oceans and Seas , Oxygen Isotopes/chemistry , Time Factors , Volatilization , Water Movements , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...