Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(17)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37921248

ABSTRACT

Machine-learning potentials provide computationally efficient and accurate approximations of the Born-Oppenheimer potential energy surface. This potential determines many materials properties and simulation techniques usually require its gradients, in particular forces and stress for molecular dynamics, and heat flux for thermal transport properties. Recently developed potentials feature high body order and can include equivariant semi-local interactions through message-passing mechanisms. Due to their complex functional forms, they rely on automatic differentiation (AD), overcoming the need for manual implementations or finite-difference schemes to evaluate gradients. This study discusses how to use AD to efficiently obtain forces, stress, and heat flux for such potentials, and provides a model-independent implementation. The method is tested on the Lennard-Jones potential, and then applied to predict cohesive properties and thermal conductivity of tin selenide using an equivariant message-passing neural network potential.

2.
Phys Rev Lett ; 130(23): 236301, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37354415

ABSTRACT

The anharmonicity of atomic motion limits the thermal conductivity in crystalline solids. However, a microscopic understanding of the mechanisms active in strong thermal insulators is lacking. In this Letter, we classify 465 experimentally known materials with respect to their anharmonicity and perform fully anharmonic ab initio Green-Kubo calculations for 58 of them, finding 28 thermal insulators with κ<10 W/mK including 6 with ultralow κ≲1 W/mK. Our analysis reveals that the underlying strong anharmonic dynamics is driven by the exploration of metastable intrinsic defect geometries. This is at variance with the frequently applied perturbative approach, in which the dynamics is assumed to evolve around a single stable geometry.

3.
Nat Commun ; 13(1): 6987, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36385117

ABSTRACT

The lanthanum-hydrogen system has attracted significant attention following the report of superconductivity in LaH10 at near-ambient temperatures and high pressures. Phases other than LaH10 are suspected to be synthesized based on both powder X-ray diffraction and resistivity data, although they have not yet been identified. Here, we present the results of our single-crystal X-ray diffraction studies on this system, supported by density functional theory calculations, which reveal an unexpected chemical and structural diversity of lanthanum hydrides synthesized in the range of 50 to 180 GPa. Seven lanthanum hydrides were produced, LaH3, LaH~4, LaH4+δ, La4H23, LaH6+δ, LaH9+δ, and LaH10+δ, and the atomic coordinates of lanthanum in their structures determined. The regularities in rare-earth element hydrides unveiled here provide clues to guide the search for other synthesizable hydrides and candidate high-temperature superconductors. The hydrogen content variability in lanthanum hydrides and the samples' phase heterogeneity underline the challenges related to assessing potentially superconducting phases and the nature of electronic transitions in high-pressure hydrides.

SELECTION OF CITATIONS
SEARCH DETAIL
...