Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4681, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542031

ABSTRACT

Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.


Subject(s)
Cyanobacteria , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Manganese/metabolism , Oxygen/metabolism , Cryoelectron Microscopy , Cyanobacteria/metabolism
2.
Plant Physiol ; 189(2): 790-804, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35134246

ABSTRACT

Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.


Subject(s)
Photosystem II Protein Complex , Synechocystis , Chlorophyll/metabolism , Pheophytins/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism
3.
Front Microbiol ; 12: 756912, 2021.
Article in English | MEDLINE | ID: mdl-34712217

ABSTRACT

Type IV pili are bacterial surface-exposed filaments that are built up by small monomers called pilin proteins. Pilins are synthesized as longer precursors (prepilins), the N-terminal signal peptide of which must be removed by the processing protease PilD. A mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the PilD protease is not capable of photoautotrophic growth because of the impaired function of Sec translocons. Here, we isolated phototrophic suppressor strains of the original ΔpilD mutant and, by sequencing their genomes, identified secondary mutations in the SigF sigma factor, the γ subunit of RNA polymerase, the signal peptide of major pilin PilA1, and in the pilA1-pilA2 intergenic region. Characterization of suppressor strains suggests that, rather than the total prepilin level in the cell, the presence of non-glycosylated PilA1 prepilin is specifically harmful. We propose that the restricted lateral mobility of the non-glycosylated PilA1 prepilin causes its accumulation in the translocon-rich membrane domains, which attenuates the synthesis of membrane proteins.

4.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918522

ABSTRACT

Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex. They include CyanoP, CyanoQ, and Psb27, which are all attached to the lumenal side of PSII complexes. Here, we show that the lumenal Ycf48 assembly factor found in the cyanobacterium Synechocystis sp. PCC 6803 is also a lipoprotein. Detailed mass spectrometric analysis of the isolated protein supported by site-directed mutagenesis experiments indicates lipidation of the N-terminal C29 residue of Ycf48 and removal of three amino acids from the C-terminus. The lipobox sequence in Ycf48 contains a cysteine residue at the -3 position compared to Leu/Val/Ile residues found in the canonical lipobox sequence. The atypical Ycf48 lipobox sequence is present in most cyanobacteria but is absent in eukaryotes. A possible role for lipoproteins in the coordinated assembly of cyanobacterial PSII is discussed.


Subject(s)
Bacterial Proteins/metabolism , Lipid Metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism
5.
Plant Cell ; 31(9): 2241-2258, 2019 09.
Article in English | MEDLINE | ID: mdl-31320483

ABSTRACT

Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.


Subject(s)
Bacterial Proteins/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Rubredoxins/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Chlorophyll/biosynthesis , Mutation , Photosystem I Protein Complex/metabolism , Pigments, Biological/isolation & purification , Rubredoxins/chemistry , Rubredoxins/genetics , Synechocystis/genetics , Synechocystis/growth & development , Thylakoids/metabolism
6.
Folia Microbiol (Praha) ; 64(5): 683-689, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31359262

ABSTRACT

The biogenesis of the cyanobacterial photosystem II (PSII) complex requires a number of auxiliary assembly factors that improve efficiency of the process but their precise function is not well understood. To assess a possible synergic action of the Ycf48 and Ycf39 factors acting in early steps of the biogenesis via interaction with the nascent D1 subunit of PSII, we constructed and characterised a double mutant of the cyanobacterium Synechocystis PCC 6803 lacking both these proteins. In addition, we also deleted the ycf39 gene in the double mutant lacking Ycf48 and Pam68, the latter being a ribosomal factor promoting insertion of chlorophyll (Chl) into the CP47 subunit of PSII. The resulting double ΔYcf48/ΔYcf39 and triple ΔYcf48/ΔPam68/ΔYcf39 mutants were deficient in PSII and total Chl, and in contrast to the source mutants, they lost the capacity for autotrophy. Interestingly, autotrophic growth was restored in both of the new multiple mutants by enhancing Chl biosynthesis using a specific ferrochelatase inhibitor. Taking together with the weak radioactive labelling of the D1 protein, these findings can be explained by inhibition of the D1 synthesis caused by the lack and/or incorrect binding of Chl molecules. The results emphasise the key importance of the sufficient Chl supply for the PSII biogenesis and also support the existence of a so far enigmatic regulatory mechanism leading to the reduced overall Chl biosynthesis/accumulation when the PSII assembly is impaired.


Subject(s)
Bacterial Proteins/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Autotrophic Processes , Bacterial Proteins/genetics , Chlorophyll/metabolism , Gene Deletion , Mutation , Photosystem II Protein Complex/genetics , Protein Binding , Synechocystis/genetics , Synechocystis/growth & development
7.
Proc Natl Acad Sci U S A ; 115(33): E7824-E7833, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061392

ABSTRACT

Robust photosynthesis in chloroplasts and cyanobacteria requires the participation of accessory proteins to facilitate the assembly and maintenance of the photosynthetic apparatus located within the thylakoid membranes. The highly conserved Ycf48 protein acts early in the biogenesis of the oxygen-evolving photosystem II (PSII) complex by binding to newly synthesized precursor D1 subunit and by promoting efficient association with the D2 protein to form a PSII reaction center (PSII RC) assembly intermediate. Ycf48 is also required for efficient replacement of damaged D1 during the repair of PSII. However, the structural features underpinning Ycf48 function remain unclear. Here we show that Ycf48 proteins encoded by the thermophilic cyanobacterium Thermosynechococcus elongatus and the red alga Cyanidioschyzon merolae form seven-bladed beta-propellers with the 19-aa insertion characteristic of eukaryotic Ycf48 located at the junction of blades 3 and 4. Knowledge of these structures has allowed us to identify a conserved "Arg patch" on the surface of Ycf48 that is important for binding of Ycf48 to PSII RCs but also to larger complexes, including trimeric photosystem I (PSI). Reduced accumulation of chlorophyll in the absence of Ycf48 and the association of Ycf48 with PSI provide evidence of a more wide-ranging role for Ycf48 in the biogenesis of the photosynthetic apparatus than previously thought. Copurification of Ycf48 with the cyanobacterial YidC protein insertase supports the involvement of Ycf48 during the cotranslational insertion of chlorophyll-binding apopolypeptides into the membrane.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photosystem II Protein Complex/biosynthesis , Bacterial Proteins/genetics , Cyanobacteria/genetics , Photosystem I Protein Complex/biosynthesis , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics
8.
Plant Physiol ; 176(4): 2931-2942, 2018 04.
Article in English | MEDLINE | ID: mdl-29463774

ABSTRACT

Photosystem II (PSII) is a large enzyme complex embedded in the thylakoid membrane of oxygenic phototrophs. The biogenesis of PSII requires the assembly of more than 30 subunits, with the assistance of a number of auxiliary proteins. In plants and cyanobacteria, the photosynthesis-affected mutant 68 (Pam68) is important for PSII assembly. However, its mechanisms of action remain unknown. Using a Synechocystis PCC 6803 strain expressing Flag-tagged Pam68, we purified a large protein complex containing ribosomes, SecY translocase, and the chlorophyll-binding PSII inner antenna CP47. Using 2D gel electrophoresis, we identified a pigmented Pam68-CP47 subcomplex and found Pam68 bound to ribosomes. Our results show that Pam68 binds to ribosomes even in the absence of CP47 translation. Furthermore, Pam68 associates with CP47 at an early phase of its biogenesis and promotes the synthesis of this chlorophyll-binding polypeptide until the attachment of the small PSII subunit PsbH. Deletion of both Pam68 and PsbH nearly abolishes the synthesis of CP47, which can be restored by enhancing chlorophyll biosynthesis. These results strongly suggest that ribosome-bound Pam68 stabilizes membrane segments of CP47 and facilitates the insertion of chlorophyll molecules into the translated CP47 polypeptide chain.


Subject(s)
Bacterial Proteins/metabolism , Chlorophyll/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Ribosomes/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism , Electrophoresis, Gel, Two-Dimensional , Light-Harvesting Protein Complexes/genetics , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , Photosystem II Protein Complex/genetics , Protein Binding , Synechocystis/genetics , Synechocystis/metabolism
9.
Biochim Biophys Acta Bioenerg ; 1858(5): 337-350, 2017 May.
Article in English | MEDLINE | ID: mdl-28188782

ABSTRACT

Polyunsaturated lipids are important components of photosynthetic membranes. Xanthophylls are the main photoprotective agents, can assist in protection against light stress, and are crucial in the recovery from photoinhibition. We generated the xanthophyll- and polyunsaturated lipid-deficient ROAD mutant of Synechocystis sp. PCC6803 (Synechocystis) in order to study the little-known cooperative effects of lipids and carotenoids (Cars). Electron microscopic investigations confirmed that in the absence of xanthophylls the S-layer of the cellular envelope is missing. In wild-type (WT) cells, as well as the xanthophyll-less (RO), polyunsaturated lipid-less (AD), and the newly constructed ROAD mutants the lipid and Car compositions were determined by MS and HPLC, respectively. We found that, relative to the WT, the lipid composition of the mutants was remodeled and the Car content changed accordingly. In the mutants the ratio of non-bilayer-forming (NBL) to bilayer-forming (BL) lipids was found considerably lower. Xanthophyll to ß-carotene ratio increased in the AD mutant. In vitro and in vivo methods demonstrated that saturated, monounsaturated lipids and xanthophylls may stabilize the trimerization of Photosystem I (PSI). Fluorescence induction and oxygen-evolving activity measurements revealed increased light sensitivity of RO cells compared to those of the WT. ROAD showed a robust increase in light susceptibility and reduced recovery capability, especially at moderate low (ML) and moderate high (MH) temperatures, indicating a cooperative effect of xanthophylls and polyunsaturated lipids. We suggest that both lipid unsaturation and xanthophylls are required for providing the proper structure and functioning of the membrane environment that protects against light and temperature stress.


Subject(s)
Cell Membrane/radiation effects , Light , Membrane Lipids/radiation effects , Photosynthesis/radiation effects , Photosystem I Protein Complex/radiation effects , Stress, Physiological , Synechocystis/radiation effects , Temperature , Xanthophylls/radiation effects , Adaptation, Physiological , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Genotype , Lipid Metabolism/genetics , Lipid Metabolism/radiation effects , Membrane Lipids/metabolism , Mutation , Phenotype , Photosynthesis/genetics , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/ultrastructure , Thylakoids/metabolism , Thylakoids/radiation effects , Time Factors , Xanthophylls/genetics , Xanthophylls/metabolism , beta Carotene/metabolism , beta Carotene/radiation effects
10.
Plant Cell Physiol ; 57(9): 1921-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27388341

ABSTRACT

Although the PSII complex is highly conserved in cyanobacteria and chloroplasts, the PsbU and PsbV subunits stabilizing the oxygen-evolving Mn4CaO5 cluster in cyanobacteria are absent in chloroplasts and have been replaced by the PsbP and PsbQ subunits. There is, however, a distant cyanobacterial homolog of PsbP, termed CyanoP, of unknown function. Here we show that CyanoP plays a role in the early stages of PSII biogenesis in Synechocystis sp. PCC 6803. CyanoP is present in the PSII reaction center assembly complex (RCII) lacking both the CP47 and CP43 modules and binds to the smaller D2 module. A small amount of larger PSII core complexes co-purifying with FLAG-tagged CyanoP indicates that CyanoP can accompany PSII on most of its assembly pathway. A role in biogenesis is supported by the accumulation of unassembled D1 precursor and impaired formation of RCII in a mutant lacking CyanoP. Interestingly, the pull-down preparations of CyanoP-FLAG from a strain lacking CP47 also contained PsbO, indicating engagement of this protein with PSII at a much earlier stage in assembly than previously assumed.


Subject(s)
Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechocystis/genetics
11.
Plant Cell Physiol ; 57(1): 95-104, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26578692

ABSTRACT

Thylakoid biogenesis is an intricate process requiring accurate and timely assembly of proteins, pigments and other cofactors into functional, photosynthetically competent membranes. PSII assembly is studied in particular as its core protein, D1, is very susceptible to photodamage and has a high turnover rate, particularly in high light. PSII assembly is a modular process, with assembly steps proceeding in a specific order. Using aqueous two-phase partitioning to separate plasma membranes (PM) and thylakoid membranes (TM), we studied the subcellular localization of the early assembly steps for PSII biogenesis in a Synechocystis sp. PCC6803 cyanobacterium strain lacking the CP47 antenna. This strain accumulates the early D1-D2 assembly complex which was localized in TM along with associated PSII assembly factors. We also followed insertion and processing of the D1 precursor (pD1) by radioactive pulse-chase labeling. D1 is inserted into the membrane with a C-terminal extension which requires cleavage by a specific protease, the C-terminal processing protease (CtpA), to allow subsequent assembly of the oxygen-evolving complex. pD1 insertion as well as its conversion to mature D1 under various light conditions was seen only in the TM. Epitope-tagged CtpA was also localized in the same membrane, providing further support for the thylakoid location of pD1 processing. However, Vipp1 and PratA, two proteins suggested to be part of the so-called 'thylakoid centers', were found to associate with the PM. Together, these results suggest that early PSII assembly steps occur in TM or specific areas derived from them, with interaction with PM needed for efficient PSII and thylakoid biogenesis.


Subject(s)
Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Light , Photosynthesis/radiation effects , Synechocystis/radiation effects , Thylakoids/metabolism , Thylakoids/radiation effects
12.
Biochim Biophys Acta ; 1847(10): 1153-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26045333

ABSTRACT

In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of photosynthetic complexes in wild-type and various mutant strains of the cyanobacterium Synechocystis sp. PCC 6803. Although it is generally accepted that xanthophylls do not play a role in cyanobacterial photosynthesis in low-light conditions, we have found that the absence of xanthophylls leads to reduced oligomerization of photosystems I and II. This is remarkable because these complexes do not bind xanthophylls. Oligomerization is even more disturbed in crtH mutant cells, which show limited carotenoid synthesis; in these cells also the phycobilisomes are distorted despite the fact that these extramembranous light-harvesting complexes do not contain carotenoids. The number of phycocyanin rods connected to the phycobilisome core is strongly reduced leading to high amounts of unattached phycocyanin units. In the absence of carotenoids the overall organization of the thylakoid membranes is disturbed: Photosystem II is not formed, photosystem I hardly oligomerizes and the assembly of phycobilisomes remains incomplete. These data underline the importance of carotenoids in the structural and functional organization of the cyanobacterial photosynthetic machinery.

13.
Plant Cell ; 26(3): 1200-12, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24681620

ABSTRACT

Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and ß-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.


Subject(s)
Chlorophyll Binding Proteins/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
J Photochem Photobiol B ; 130: 318-26, 2014 Jan 05.
Article in English | MEDLINE | ID: mdl-24389045

ABSTRACT

The role of the Syn-CRY cryptochrome from the cyanobacterium Synechocystis sp. PCC 6803 has been a subject of research for more than a decade. Recently we have shown that photolyase, showing strong homology with Syn-CRY is required for Photosystem II repair by preventing accumulation of DNA lesions under UV-B (Vass et al. 2013). Here we investigated if Syn-CRY is also involved in PSII repair, either via removal of DNA lesions or other mechanism? The Δsll1629 mutant lacking Syn-CRY lost faster the PSII activity and D1 protein during UV-B or PAR than the WT. However, no detectable damages in the genomic DNA were observed. The transcript levels of the UV-B and light stress indicator gene psbA3, encoding D1, are comparable in the two strains showing that Δsll1629 cells are not defective at the transcriptional level. Nevertheless 2D protein analysis in combination with mass spectrometry showed a decreased accumulation of several, mostly cytoplasmic, proteins including PilA1 and bicarbonate transporter SbtA. Δsll1629 cells exposed to high light also showed a limitation in de novo assembly of PSII. It is concluded that Syn-CRY is required for efficient restoration of Photosystem II activity following UV-B and PAR induced photodamage. This effect is not caused by retardation of DNA repair, instead the synthesis of new D1 (and D2) subunit(s) and/or the assembly of the Photosystem II reaction center complex is likely affected due to the lack of intracellular CO2, or via a so far unidentified pathway that possibly includes the PilA1 protein.


Subject(s)
Bacterial Proteins/metabolism , Cryptochromes/metabolism , DNA Repair , Light , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Cryptochromes/genetics , DNA Damage , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Photosystem II Protein Complex/genetics , Synechocystis/genetics , Synechocystis/radiation effects
15.
Planta ; 237(2): 471-80, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22847023

ABSTRACT

The de novo assembly of photosystem II (PSII) depends on a variety of assisting factors. We have previously shown that two of them, namely, YCF48 and Sll0933, mutually interact and form a complex (Rengstl et al. in J Biol Chem 286:21944-21951, 2011). To gain further insights into the importance of the YCF48/Sll0933 interaction, an ycf48 ( - ) sll0933 ( - ) double mutant was constructed and its phenotype was compared with the single mutants' phenotypes. Analysis of fluorescence spectra and oxygen evolution revealed high-light sensitivity not only for YCF48 deficient strains but also for sll0933 ( - ), which, in addition, showed reduced synthesis and accumulation of newly synthesized CP43 and CP47 proteins in pulse-labeling experiments. In general, the phenotypic characteristics of ycf48 ( - ) sll0933 ( - ) were dominated by the effect of the ycf48 deletion and additional inactivation of the sll0933 gene showed only negligible additional impairments with regard to growth, absorption spectra and accumulation of PSII-related proteins and assembly complexes. In yeast split-ubiquitin analyses, the interaction between YCF48 and Sll0933 was confirmed and, furthermore, support for direct binding of Sll0933 to CP43 and CP47 was obtained. Our data provide important new information which further refines our knowledge about the PSII assembly process and role of accessory protein factors within it.


Subject(s)
Bacterial Proteins/metabolism , Mutation , Photosystem II Protein Complex/metabolism , Synechocystis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Electrophoresis, Polyacrylamide Gel , Fluorescence , Oxygen/metabolism , Phenotype , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/isolation & purification , Protein Binding , Protein Interaction Mapping , Spectrophotometry, Ultraviolet , Synechocystis/metabolism , Thylakoids/genetics , Thylakoids/metabolism , Transcriptional Activation , Transformation, Genetic , Yeasts/genetics , Yeasts/metabolism
16.
Plant Physiol ; 158(1): 476-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22086423

ABSTRACT

We have investigated the location of the Psb27 protein and its role in photosystem (PS) II biogenesis in the cyanobacterium Synechocystis sp. PCC 6803. Native gel electrophoresis revealed that Psb27 was present mainly in monomeric PSII core complexes but also in smaller amounts in dimeric PSII core complexes, in large PSII supercomplexes, and in the unassembled protein fraction. We conclude from analysis of assembly mutants and isolated histidine-tagged PSII subcomplexes that Psb27 associates with the "unassembled" CP43 complex, as well as with larger complexes containing CP43, possibly in the vicinity of the large lumenal loop connecting transmembrane helices 5 and 6 of CP43. A functional role for Psb27 in the biogenesis of CP43 is supported by the decreased accumulation and enhanced fragmentation of unassembled CP43 after inactivation of the psb27 gene in a mutant lacking CP47. Unexpectedly, in strains unable to assemble PSII, a small amount of Psb27 comigrated with monomeric and trimeric PSI complexes upon native gel electrophoresis, and Psb27 could be copurified with histidine-tagged PSI isolated from the wild type. Yeast two-hybrid assays suggested an interaction of Psb27 with the PsaB protein of PSI. Pull-down experiments also supported an interaction between CP43 and PSI. Deletion of psb27 did not have drastic effects on PSII assembly and repair but did compromise short-term acclimation to high light. The tentative interaction of Psb27 and CP43 with PSI raises the possibility that PSI might play a previously unrecognized role in the biogenesis/repair of PSII.


Subject(s)
Bacterial Proteins/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Multiprotein Complexes/metabolism , Mutation , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Protein Stability
17.
Plant Cell Environ ; 35(4): 806-18, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22070528

ABSTRACT

The cyanobacterial small CAB-like proteins (SCPs) are single-helix membrane proteins mostly associated with the photosystem II (PSII) complex that accumulate under stress conditions. Their function is still ambiguous although they are assumed to regulate chlorophyll (Chl) biosynthesis and/or to protect PSII against oxidative damage. In this study, the effect of SCPs on the PSII-specific light-induced damage and generation of singlet oxygen ((1)O(2)) was assessed in the strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking PSI (PSI-less strain) or lacking PSI together with all SCPs (PSI-less/scpABCDE(-) strain). The light-induced oxidative modifications of the PSII D1 protein reflected by a mobility shift of the D1 protein and by generation of a D1-cytochrome b-559 adduct were more pronounced in the PSI-less/scpABCDE(-) strain. This increased protein oxidation correlated with a faster formation of (1)O(2) as detected by the green fluorescence of Singlet Oxygen Sensor Green assessed by a laser confocal scanning microscopy and by electron paramagnetic resonance spin-trapping technique using 2, 2, 6, 6-tetramethyl-4-piperidone (TEMPD) as a spin trap. In contrast, the formation of hydroxyl radicals was similar in both strains. Our results show that SCPs prevent (1)O(2) formation during PSII damage, most probably by the binding of free Chl released from the damaged PSII complexes.


Subject(s)
Bacterial Proteins/metabolism , Photosystem II Protein Complex/physiology , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism , Synechocystis/physiology , Chlorophyll/metabolism , Cold Temperature , Cytochrome b Group/metabolism , Hydroxyl Radical/metabolism , Light , Oxidation-Reduction , Oxidative Stress , Photosystem I Protein Complex/physiology , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Synechocystis/radiation effects , Thylakoids/metabolism
18.
Biochim Biophys Acta ; 1797(5): 566-75, 2010 May.
Article in English | MEDLINE | ID: mdl-20153291

ABSTRACT

The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in DeltaPsbO and DeltaPsbV mutants, in which the CaMn(4) cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and DeltaCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the DeltapsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the DeltaPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.


Subject(s)
Calcium/chemistry , Manganese/chemistry , Mutation/genetics , Peptide Hydrolases/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics , Synechocystis/genetics , Calcium/metabolism , Manganese/metabolism , Oxidation-Reduction , Photosystem II Protein Complex/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Synechocystis/metabolism , Thylakoids/metabolism
19.
Plant Cell ; 19(9): 2839-54, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17905897

ABSTRACT

The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.


Subject(s)
Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Protein Processing, Post-Translational , Protein Subunits/chemistry , Protein Subunits/metabolism , Synechocystis/metabolism , Amino Acid Sequence , Autotrophic Processes/drug effects , Autotrophic Processes/radiation effects , Dimerization , Light , Lincomycin/pharmacology , Models, Biological , Molecular Sequence Data , Mutant Proteins/metabolism , Mutation/genetics , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/radiation effects , Protein Structure, Secondary , Spectrometry, Fluorescence , Structure-Activity Relationship , Synechocystis/cytology , Synechocystis/drug effects , Synechocystis/radiation effects , Thylakoids/drug effects , Thylakoids/metabolism , Thylakoids/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...