Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
ERJ Open Res ; 9(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-37868143

ABSTRACT

Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure. Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study. Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12-18 months. Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

2.
J Psychopharmacol ; 37(9): 876-890, 2023 09.
Article in English | MEDLINE | ID: mdl-37572027

ABSTRACT

Psychedelic microdosing is the practice of taking very low doses of psychedelic substances, typically over a longer period of time. The long-term safety of chronic microdosing is relatively uncharacterized, but valvular heart disease (VHD) has been proposed as a potential risk due to activation of the serotonin 5-HT2B receptor. However, this risk has not yet been comprehensively assessed. This analysis searched for all relevant in vitro, animal, and clinical studies related to the VHD risk of lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT), and the non-psychedelic 3,4-methylenedioxymethamphetamine (MDMA). All five compounds and some metabolites could bind to the 5-HT2B receptor with potency equal to or greater than that of the 5-HT2A receptor, the primary target of psychedelics. All compounds were partial agonists at the 5-HT2B receptor with the exception of mescaline, which could not be adequately assessed due to low potency. Safety margins relative to the maximum plasma concentrations from typical microdoses were greater than known valvulopathogens, but not without potential risk. No animal or clinical studies appropriately designed to evaluate VHD risk were found for the four psychedelics. However, there is some clinical evidence that chronic ingestion of full doses of MDMA is associated with VHD. We conclude that VHD is a potential risk with chronic psychedelic microdosing, but further studies are necessary to better define this risk.


Subject(s)
Hallucinogens , Heart Valve Diseases , N-Methyl-3,4-methylenedioxyamphetamine , Humans , Hallucinogens/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Mescaline , Serotonin , Psilocybin , Lysergic Acid Diethylamide/adverse effects , Heart Valve Diseases/chemically induced
3.
J Allergy Clin Immunol ; 149(1): 89-101, 2022 01.
Article in English | MEDLINE | ID: mdl-33891981

ABSTRACT

BACKGROUND: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Dermatitis, Atopic/drug therapy , Dermatologic Agents/therapeutic use , Interleukins/antagonists & inhibitors , Adult , Aged , Asthma/genetics , Asthma/immunology , Bronchi/immunology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/immunology , Female , Humans , Immunoglobulin E/blood , Interleukins/genetics , Interleukins/immunology , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology , Proteome/drug effects , Severity of Illness Index , Skin/immunology , Sputum/immunology , Transcriptome/drug effects , Treatment Outcome , Interleukin-22
4.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: mdl-34737220

ABSTRACT

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Subject(s)
Asthma , Quality of Life , Blood Proteins , Humans , Inflammation/metabolism , Proteomics , Severity of Illness Index , Steroids/therapeutic use
5.
Chest ; 160(1): 53-64, 2021 07.
Article in English | MEDLINE | ID: mdl-33610577

ABSTRACT

BACKGROUND: Although estimates of suboptimal adherence to oral corticosteroids in asthma range from 30% to 50%, no ideal method for measurement exists; the impact of poor adherence in severe asthma is likely to be particularly high. RESEARCH QUESTIONS: What is the prevalence of suboptimal adherence detected by self-reporting and direct measures? Is suboptimal adherence associated with disease activity? STUDY DESIGN AND METHODS: Data were included from individuals with severe asthma taking part in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study and prescribed daily oral corticosteroids. Participants completed the Medication Adherence Report Scale, a five-item questionnaire used to grade adherence on a scale from 1 to 5, and provided a urine sample for analysis of prednisolone and metabolites by liquid chromatography-mass spectrometry. RESULTS: Data from 166 participants were included in this study: mean (SD) age, 54.2 (± 11.9) years; FEV1, 65.1% (± 20.5%) predicted; female, 58%; 37% completing the Medication Adherence Report Scale reported suboptimal adherence; and 43% with urinary corticosteroid data did not have detectable prednisolone or metabolites in their urine. Good adherence by both methods was detected in 49 of the 142 (35%) of participants in whom both methods were performed; adherence detection did not match between methods in 53%. Self-reported high adherers had better asthma control and quality of life, whereas directly measured high adherers had lower blood eosinophil levels. INTERPRETATION: Low adherence is a common problem in severe asthma, whether measured directly or self-reported. We report poor agreement between the two methods, suggesting some disassociation between self-assessment of medication adherence and regular oral corticosteroid use, which suggests that each approach may provide complementary information in clinical practice.


Subject(s)
Asthma/drug therapy , Glucocorticoids/administration & dosage , Medication Adherence , Prescription Drugs/administration & dosage , Quality of Life , Administration, Inhalation , Administration, Oral , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Surveys and Questionnaires
6.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32667261

ABSTRACT

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Subject(s)
Asthma/metabolism , Biomarkers/urine , Inflammation/metabolism , Leukotriene E4/metabolism , Leukotriene E4/urine , Prostaglandins/metabolism , Prostaglandins/urine , Adult , Asthma/physiopathology , Female , Humans , Inflammation/physiopathology , Male , Middle Aged
8.
Handb Exp Pharmacol ; 264: 169-204, 2021.
Article in English | MEDLINE | ID: mdl-32797331

ABSTRACT

The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).


Subject(s)
Nitric Oxide Synthase Type III , Nitric Oxide Synthase , Cyclic GMP , Humans , Nitric Oxide , Nitric Oxide Synthase/metabolism , Reactive Oxygen Species , Signal Transduction
9.
Eur Respir J ; 55(2)2020 02.
Article in English | MEDLINE | ID: mdl-31515400

ABSTRACT

INTRODUCTION: Asthma is a heterogeneous condition, characterised by chronic inflammation of the airways, typically managed with inhaled bronchodilators and corticosteroids. In the case of uncontrolled asthma, oral corticosteroids (OCSs) are often prescribed. Good adherence and inhalation technique are associated with improved outcomes; however, it is difficult to monitor appropriate drug intake and effectiveness in individual patients. Exhaled breath contains thousands of volatile organic compounds (VOCs) that reflect changes in the body's chemistry and may be useful for monitoring drug pharmacokinetics/pharmacodynamics. We aimed to investigate the association of exhaled VOCs in severe asthma patients from the U-BIOPRED cohort (by gas chromatography coupled with time-of-flight mass spectrometry) with urinary levels of salbutamol and OCSs (by liquid chromatography coupled with high-resolution mass spectrometry). METHODS: Samples were collected at baseline and after 12-18 months of follow-up. Statistical analysis was based on univariate and multivariate modelling, followed by area under the receiver operating characteristic curve (AUC) calculation. Results were verified through longitudinal replication and independent validation. RESULTS: Data were available for 78 patients (baseline n=48, replication n=30 and validation n=30). Baseline AUC values were 82.1% (95% CI 70.4-93.9%) for salbutamol and 78.8% (95% CI 65.8-91.8%) for OCS. These outcomes could be adequately replicated and validated. Additional regression analysis between qualified exhaled VOCs and urinary concentrations of salbutamol and prednisone showed statistically significant correlations (p<0.01). CONCLUSION: We have linked exhaled VOCs to urinary detection of salbutamol and OCSs. This merits further development of breathomics into a point-of-care tool for therapeutic drug monitoring.


Subject(s)
Asthma , Volatile Organic Compounds , Asthma/diagnosis , Asthma/drug therapy , Breath Tests , Exhalation , Gas Chromatography-Mass Spectrometry , Humans , Volatile Organic Compounds/analysis
10.
Eur Respir J ; 53(1)2019 01.
Article in English | MEDLINE | ID: mdl-30578390

ABSTRACT

Type-2 (T2) immune responses in airway epithelial cells (AECs) classifies mild-moderate asthma into a T2-high phenotype. We examined whether currently available clinical biomarkers can predict AEC-defined T2-high phenotype within the U-BIOPRED cohort.The transcriptomic profile of AECs obtained from brushings of 103 patients with asthma and 44 healthy controls was obtained and gene set variation analysis used to determine the relative expression score of T2 asthma using a signature from interleukin (IL)-13-exposed AECs.37% of asthmatics (45% nonsmoking severe asthma, n=49; 33% of smoking or ex-smoking severe asthma, n=18; and 28% mild-moderate asthma, n=36) were T2-high using AEC gene expression. They were more symptomatic with higher exhaled nitric oxide fraction (F eNO) and blood and sputum eosinophils, but not serum IgE or periostin. Sputum eosinophilia correlated best with the T2-high signature. F eNO (≥30 ppb) and blood eosinophils (≥300 cells·µL-1) gave a moderate prediction of T2-high asthma. Sputum IL-4, IL-5 and IL-13 protein levels did not correlate with gene expression.T2-high severe asthma can be predicted to some extent from raised levels of F eNO, blood and sputum eosinophil counts, but serum IgE or serum periostin were poor predictors. Better bedside biomarkers are needed to detect T2-high.


Subject(s)
Asthma/blood , Cell Adhesion Molecules/blood , Eosinophilia/diagnosis , Sputum/chemistry , Adult , Biomarkers , Breath Tests , Case-Control Studies , Eosinophilia/blood , Eosinophils/cytology , Female , Humans , Immunoglobulin E/blood , Interleukins/analysis , Leukocyte Count , Male , Middle Aged , Nitric Oxide/analysis , Phenotype , Prospective Studies , Smoking/adverse effects
12.
ERJ Open Res ; 2(4)2016 Oct.
Article in English | MEDLINE | ID: mdl-28053970

ABSTRACT

Poor asthma control is associated with increased airway neutrophils. Leukotriene B4 (LTB4) is a potent neutrophil chemoattractant. We examined the levels of LTB4 levels in the sputum of asthma patients and the relationship with disease severity. 47 asthma patients (categorised according to Global Initiative for Asthma treatment stage) and 12 healthy controls provided sputum samples that were processed first with PBS to obtain supernatants and secondly with dithiothreitol (DTT) to obtain supernatants. LTB4 levels were determined by ELISA. LTB4 levels were significantly higher in step 1 (steroid naïve) and step 3 (inhaled corticosteroid (ICS) plus long acting ß-agonist) patients than step 2 patients (ICS alone) (p=0.02 and p=0.01, respectively). There was very good correlation when comparing PBS processed to DTT processed supernatants. High LTB4 levels were found in the sputum of asthmatics at step 3 despite ICS use.

13.
Clin Sci (Lond) ; 128(4): 235-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25328010

ABSTRACT

The 2nd Cross Company Respiratory Symposium (CCRS), held in Horsham, U.K. in 2012, brought together representatives from across the pharmaceutical industry with expert academics, in the common interest of improving the design and translational predictiveness of in vivo models of respiratory disease. Organized by the respiratory representatives of the European Federation of Pharmaceutical Industries and Federations (EFPIA) group of companies involved in the EU-funded project (U-BIOPRED), the aim of the symposium was to identify state-of-the-art improvements in the utility and design of models of respiratory disease, with a view to improving their translational potential and reducing wasteful animal usage. The respiratory research and development community is responding to the challenge of improving translation in several ways: greater collaboration and open sharing of data, careful selection of the species, complexity and chronicity of the models, improved practices in preclinical research, continued refinement in models of respiratory diseases and their sub-types, greater understanding of the biology underlying human respiratory diseases and their sub-types, and finally greater use of human (and especially disease-relevant) cells, tissues and explants. The present review highlights these initiatives, combining lessons from the symposium and papers published in Clinical Science arising from the symposium, with critiques of the models currently used in the settings of asthma, idiopathic pulmonary fibrosis and COPD. The ultimate hope is that this will contribute to a more rational, efficient and sustainable development of a range of new treatments for respiratory diseases that continue to cause substantial morbidity and mortality across the world.


Subject(s)
Disease Models, Animal , Lung Diseases/pathology , Models, Biological , Translational Research, Biomedical , Animals , Drug Delivery Systems , Humans , Randomized Controlled Trials as Topic
15.
Basic Clin Pharmacol Toxicol ; 114(1): 7-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23981595

ABSTRACT

The research and development process for novel drugs to treat inflammatory diseases is described, and several current issues and debates relevant to this are raised: the decline in productivity, attrition, challenges and trends in developing anti-inflammatory drugs, the poor clinical predictivity of experimental models of inflammatory diseases, heterogeneity within inflammatory diseases, 'improving on the Beatles' in treating inflammation, and the relationships between big pharma and biotechs. The pharmaceutical research and development community is responding to these challenges in multiple ways which it is hoped will lead to the discovery and development of a new generation of anti-inflammatory medicines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drug Design , Drug Evaluation, Preclinical , Animals , Disease Models, Animal , Humans , Inflammation/drug therapy
16.
Clin Sci (Lond) ; 125(12): 555-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23725401

ABSTRACT

The present study investigated the role that imaging could have for assessing lung inflammation in a mouse model of HDM (house dust mite)-provoked allergic inflammation. Inflammation is usually assessed using terminal procedures such as BAL (bronchoalveolar lavage) and histopathology; however, MRI (magnetic resonance imaging) and CT (computed tomography) methods have the potential to allow longitudinal, repeated study of individual animals. Female BALB/c mice were administered daily either saline, or a solution of mixed HDM proteins sufficient to deliver a dose of 12 or 25 µg total HDM protein±budesonide (1 mg/kg of body weight, during weeks 5-7) for 7 weeks. AHR (airway hyper-responsiveness) and IgE measurements were taken on weeks 3, 5 and 7. Following imaging sessions at weeks 3, 5 and 7 lungs were prepared for histology. BAL samples were taken at week 7 and lungs prepared for histology. MRI showed a gradual weekly increase in LTI (lung tissue intensity) in animals treated with HDM compared with control. The 25 µg HDM group showed a continual significant increase in LTI between weeks 3 and 7, the 12 µg HDM-treated group showed a similar rate of increase, and plateaued by week 5. A corresponding increase in AHR, cell counts and IgE were observed. CT showed significant increases in lung tissue density from week 1 of HDM exposure and this was maintained throughout the 7 weeks. Budesonide treatment reversed the increase in tissue density. MRI and CT therefore provide non-invasive sensitive methods for longitudinally assessing lung inflammation. Lung tissue changes could be compared directly with the classical functional and inflammatory readouts, allowing more accurate assessments to be made within each animal and providing a clinically translatable approach.


Subject(s)
Disease Models, Animal , Lung/diagnostic imaging , Respiratory Hypersensitivity/diagnostic imaging , Animals , Biomarkers , Chronic Disease , Female , Longitudinal Studies , Lung/pathology , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Pneumonia/diagnostic imaging , Pneumonia/pathology , Pyroglyphidae/immunology , Respiratory Hypersensitivity/pathology , Respiratory Mechanics , Tomography, X-Ray Computed
17.
J Pharmacol Exp Ther ; 344(1): 218-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23131596

ABSTRACT

Vilanterol trifenatate (vilanterol) is a novel, long-acting ß(2)-adrenoceptor (ß(2)-AR) agonist with 24 h activity. In this study, we describe the preclinical pharmacological profile of vilanterol using radioligand binding and cAMP studies in recombinant assays as well as human and guinea pig tissue systems to characterize ß(2)-AR binding and functional properties. Vilanterol displayed a subnanomolar affinity for the ß(2)-AR that was comparable with that of salmeterol but higher than olodaterol, formoterol, and indacaterol. In cAMP functional activity studies, vilanterol demonstrated similar selectivity as salmeterol for ß(2)- over ß(1)-AR and ß(3)-AR, but a significantly improved selectivity profile than formoterol and indacaterol. Vilanterol also showed a level of intrinsic efficacy that was comparable to indacaterol but significantly greater than that of salmeterol. In cellular cAMP production and tissue-based studies measuring persistence and reassertion, vilanterol had a persistence of action comparable with indacaterol and longer than formoterol. In addition, vilanterol demonstrated reassertion activity in both cell and tissue systems that was comparable with salmeterol and indacaterol but longer than formoterol. In human airways, vilanterol was shown to have a faster onset and longer duration of action than salmeterol, exhibiting a significant level of bronchodilation 22 h after treatment. From these investigations, the data for vilanterol are consistent, showing that it is a novel, potent, and selective ß(2)-AR receptor agonist with a long duration of action. This pharmacological profile combined with clinical data is consistent with once a day dosing of vilanterol in the treatment of both asthma and chronic obstructive pulmonary disease (COPD).


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Benzyl Alcohols/pharmacology , Chlorobenzenes/pharmacology , Adrenergic beta-2 Receptor Agonists/metabolism , Adrenergic beta-2 Receptor Agonists/pharmacokinetics , Adrenergic beta-3 Receptor Antagonists/pharmacology , Albuterol/analogs & derivatives , Albuterol/pharmacology , Animals , Binding, Competitive/drug effects , CHO Cells , Cell Membrane/metabolism , Cells, Cultured , Cricetinae , Cricetulus , Cyclic AMP/biosynthesis , Cyclic AMP/metabolism , Data Interpretation, Statistical , Fluorescence Polarization , Guinea Pigs , Humans , Kinetics , Propanolamines/metabolism , Propanolamines/pharmacokinetics , Propanolamines/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Radioligand Assay , Receptors, Adrenergic, beta-2/drug effects , Receptors, Adrenergic, beta-2/metabolism , Salmeterol Xinafoate
18.
Pulm Pharmacol Ther ; 25(6): 453-64, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23046662

ABSTRACT

Pre-clinical evaluation of asthma therapies requires animal models of chronic airways inflammation, airway hyperresponsiveness (AHR) and lung remodelling that accurately predict drug effectiveness in human asthma. However, most animal models focus on acute allergen challenges where chronic inflammation and airway remodelling are absent. Chronic allergen challenge models have been developed in mice but few studies use guinea-pigs which may be more relevant to humans. We tested the hypothesis that a chronic rather than acute pulmonary inflammation model would best predict clinical outcome for asthma treatments. Guinea-pigs sensitized with ovalbumin (OVA) received single (acute) or nine OVA inhalation challenges at 48 h intervals (chronic). Airways function was recorded as specific airways conductance (sG(aw)) in conscious animals for 12 h after OVA challenge. AHR to inhaled histamine, inflammatory cell influx and lung histology were determined 24 h after the single or 9th OVA exposure. The inhaled corticosteroid, fluticasone propionate (FP), the phosphodiesterase 4 inhibitor, roflumilast, and the inducible nitric oxide synthase (iNOS) inhibitor, GW274150, orally, were administered 24 and 0.5 h before and 6 h after the single or final chronic OVA exposure. Both models displayed early (EAR) and late (LAR) asthmatic responses to OVA challenge, as falls in sG(aw), AHR, as increased histamine-induced bronchoconstriction, and inflammatory cell influx. Tissue remodelling, seen as increased collagen and goblet cell hyperplasia, occurred after multiple OVA challenge. Treatment with FP and roflumilast inhibited the LAR, cell influx and AHR in both models, and the remodelling in the chronic model. GW274150 also inhibited the LAR, AHR and eosinophil influx in the acute model, but not, together with the remodelling, in the chronic model. In the clinical setting, inhaled corticosteroids and phosphodiesterase 4 inhibitors are relatively effective against most features of asthma whereas the iNOS inhibitor GW274150 was ineffective. Thus, while there remain certain differences between our data and clinical effectiveness of these antiasthma drugs, a chronic pulmonary inflammation guinea-pig model does appear to be a better pre-clinical predictor of potential asthma therapeutics than an acute model.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Bronchial Hyperreactivity/drug therapy , Inflammation/drug therapy , Acute Disease , Administration, Inhalation , Administration, Oral , Aminopyridines/pharmacology , Androstadienes/pharmacology , Animals , Asthma/physiopathology , Benzamides/pharmacology , Bronchial Hyperreactivity/physiopathology , Chronic Disease , Cyclopropanes/pharmacology , Disease Models, Animal , Fluticasone , Guinea Pigs , Histamine/immunology , Inflammation/physiopathology , Male , Ovalbumin , Sulfides/pharmacology , Time Factors
19.
Bioorg Med Chem Lett ; 21(10): 3037-40, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21482467

ABSTRACT

Heteroalicyclic carboxamidines were synthesised and evaluated as inhibitors of nitric oxide synthases. (2R)-2-Pyrrolidinecarboxamidine, in particular, was shown to be a highly potent in vitro (IC(50)=0.12 µM) and selective iNOS inhibitor (>100-fold vs both eNOS and nNOS), with probable binding to the key anchoring glutamate residue and co-ordination to the haem iron.


Subject(s)
Amidines/chemical synthesis , Amidines/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Heme/antagonists & inhibitors , Heterocyclic Compounds/chemical synthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Proline/analogs & derivatives , Amidines/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology
20.
Curr Pharm Des ; 17(7): 699-702, 2011.
Article in English | MEDLINE | ID: mdl-21406057

ABSTRACT

The pharmaceutical industry is interested in developing new treatments for severe asthma (SA), recognising that there is a substantial unmet clinical need in this area. However, it faces a significant set of barriers in attempting to do so, including a) problems arising from the way SA is defined, b) the heterogeneity of this condition, c) poor understanding of its aetiology, d) the absence of validated animal and tissue or cellular models, e) the need for biomarkers and experimental clinical models of severe asthma and its sub-groups, and f) the length and size of the clinical trials likely to be required to obtain approval and reimbursement. The discovery and validation of novel biomarkers and surrogates is likely to be a crucial part of meeting these challenges, and many academic groups and pharmaceutical companies working in this area are increasingly turning to pre-competitive, highly collaborative ways of working to address them.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Drug Discovery/trends , Drug Industry/trends , Severity of Illness Index , Animals , Asthma/immunology , Biomarkers , Clinical Trials as Topic/economics , Clinical Trials as Topic/trends , Drug Discovery/economics , Drug Discovery/methods , Drug Industry/economics , Drug Industry/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...